http://www.cnblogs.com/LBSer/p/4605904.html

  Kmeans算法是一种非监督聚类算法,由于原理简单而在业界被广泛使用,一般在实践中遇到聚类问题往往会优先使用Kmeans尝试一把看看结果。本人在工作中对Kmeans有过多次实践,进行过用户行为聚类(MapReduce版本)、图像聚类(MPI版本)等。然而在实践中发现初始点选择与聚类结果密切相关,如果初始点选取不当,聚类结果将很差。为解决这一问题,本博文尝试将模拟退火这一启发式算法与Kmeans聚类相结合,实践表明这种方法具有较好效果,已经在实际工作中推广使用。

1 Kmeans算法原理

K-MEANS算法:输入:聚类个数k,以及包含 n个数据对象的数据。输出:满足方差最小标准的k个聚类。
处理流程:        
(1)  从 n个数据对象选择 k 个对象作为初始聚类中心;
(2)  循环(3)到(4)直到每个聚类不再发生变化为止
(3)  根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(4)  重新计算每个(有变化)聚类的均值(中心对象)

1.1 Step 1

1.2 Step 2

1.3 Step 3

1.4 Step 4

1.5 Step 5

2 初始点与聚类结果的关系

K means的结果与初始点的选择密切相关,往往陷于局部最优。

2.1 例子

  下面以一个实际例子来讲初始点的选择对聚类结果的影响。首先3个中心点(分别是红绿蓝三点)被随机初始化,所有的数据点都还没有进行聚类,默认全部都标记为红色,如下图所示:

  迭代最终结果如下:

  

如果初始点为如下:

  最终会收敛到这样的结果:

3 解决方法

  那怎么解决呢?一般在实际使用中,我们会随机初始化多批初始中心点,然后对不同批次的初始中心点进行聚类,运行完后选择一个相对较优的结果。这种方法不仅不够自动,而且有较大概率得不到较优的结果。目前,研究较多的是将模拟退火、遗传算法等启发式算法与Kmeans聚类相结合,这样能大大降低陷于局部最优的困境。下图就是模拟退火的算法流程图。

4 实战

  “纸上得来终觉浅,绝知此事要躬行”,仅知道原理而不去实践永远不能深刻掌握某一知识。本人实现了基于模拟退火的Kmeans算法以及普通的Kmeans算法,以便进行比较分析。

4.1 实验步骤

  1)首先我们随机生成二维数据点以便用于聚类。

  2)基于原生的Kmeans得到的结果。

  3)基于模拟退火的Kmeans得到的结果

4.2 结论

  由上图的实验结果可以看出,基于模拟退火的Kmeans所得的总体误差准则结果为:19309.9。

  而普通的Kmeans所得的总体误差准则结果为:23678.8。

  可以看出基于模拟退火的Kmeans所得的结果较好,当然,此算法的复杂度较高,收敛所需的时间较长,尤其是在大数据环境下。

利用模拟退火提高Kmeans的聚类精度的更多相关文章

  1. [.net 面向对象程序设计进阶] (18) 多线程(Multithreading)(三) 利用多线程提高程序性能(下)

    [.net 面向对象程序设计进阶] (18) 多线程(Multithreading)(二) 利用多线程提高程序性能(下) 本节导读: 上节说了线程同步中使用线程锁和线程通知的方式来处理资源共享问题,这 ...

  2. [.net 面向对象程序设计进阶] (17) 多线程(Multithreading)(二) 利用多线程提高程序性能(中)

    [.net 面向对象程序设计进阶] (17) 多线程(Multithreading)(二) 利用多线程提高程序性能(中) 本节要点: 上节介绍了多线程的基本使用方法和基本应用示例,本节深入介绍.NET ...

  3. [.net 面向对象程序设计进阶] (16) 多线程(Multithreading)(一) 利用多线程提高程序性能(上)

    [.net 面向对象程序设计进阶] (16) 多线程(Multithreading)(一) 利用多线程提高程序性能(上) 本节导读: 随着硬件和网络的高速发展,为多线程(Multithreading) ...

  4. [转]利用/*+Ordered*/提高查询性能

    [转]利用/*+Ordered*/提高查询性能 2009-02-06 10:46:27|  分类: Oracle |  标签: |字号大中小 订阅  消耗在准备利用Oracle执行计划机制提高查询性能 ...

  5. 利用mock提高效率

    利用mock提高效率 谈到mock,就不得不讲前后端分离.理想情况下前后端不分离,由全栈的人以product和infrastructure的维度进行开发,效率是最高的.近些年来业务的复杂度越来越高,真 ...

  6. 机器学习之K均值算法(K-means)聚类

    K均值算法(K-means)聚类 [关键词]K个种子,均值 一.K-means算法原理 聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中. K-Means算法是一种聚类分析 ...

  7. 利用sklearn实现k-means

    基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np ...

  8. 利用元数据提高 SQLFlow 血缘分析结果准确率

    利用元数据提高 SQLFlow 血缘分析结果准确率 一.SQLFlow--数据治理专家的一把利器 数据血缘属于数据治理中的一个概念,是在数据溯源的过程中找到相关数据之间的联系,它是一个逻辑概念.数据治 ...

  9. 【转】利用python的KMeans和PCA包实现聚类算法

    转自:https://www.cnblogs.com/yjd_hycf_space/p/7094005.html 题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚 ...

随机推荐

  1. C/ C++ 常见编程问题

    C 中容易忽略的问题 1.在C语言中,浮点型变量分为两类: a. 单精度型:类型说明符为float, 在Turbo C 中占4个字节(32位)内存空间,其数值范围为3.4E-38~3.4E+38,可提 ...

  2. Linux 下安装 jdk压缩包

    按 esc  退出  记得 输入 :q    记得 : Linux下安装jdk 把压缩文件放在 桌面的soft 下 在usr目录下新建文件夹Java,把文件复制到 usr/java 更改下路径! 3 ...

  3. python学习之——小闹钟(持续完善ing)

    "啊,坏了,我忘了那啥啥了~~~" 为了不坏了,动手做一个小闹钟吧,一点点完善的过程一定美好极了,必像等待培育许久的花儿绽放一样,不多说,加油,期待↖(^ω^)↗ #! /usr/ ...

  4. ng中的过滤器

    angular中对输出的值提供过滤器,用法如下: {{name | currency:"¥"}}</p> 这是在在html中的用法,用 | 来添加过滤器,过滤器后面通过 ...

  5. chm手册显示已取消到该网页的导航

    解决:在chm右键查看有没有解除锁定选项.1.右键单击chm文件,选择属性:2.在最下面点击“解除锁定”并确定后,再次打开chm,就正常了

  6. 【网站运营】网站被K的原因大总结

    对于广大的站长来说网站被K或者是被降权是经常有的事情,不过我基本上还没有看见过Google的K站情况,也就是给网站降个权什么的处罚.如果你是用了很严重的作弊手段的话,那指定会是被Google给K掉的. ...

  7. tp 展示页面的后台框架

    基于郭河系统的tp后台管理系统 1.navicat的数据库建立: 1.1 新建数据库: 输入数据库名. 字符集 utf8. 排列规则 utf8 generai ci. 1.2新建表: id是个好习惯. ...

  8. mysql 数据库问题com.mysql.jdbc.exceptions.jdbc4.CommunicationsException

    本文转自:http://blog.csdn.net/zmzsoftware/article/details/6835604 MySQL第二天早上第一次连接超时报错,解决方法com.mysql.jdbc ...

  9. 3D扫描系统的构建(待处理)

    1. http://www.zhihu.com/question/32143353 是否可以 DIY 一个 3D 扫描仪或者开源 3D 扫描项目? 详细的原理介绍 2. http://www.csks ...

  10. Linux下Tomcat重新启动

    在Linux系统下,重启Tomcat使用命令操作的! 首先,进入Tomcat下的bin目录 cd /usr/local/tomcat/bin 使用Tomcat关闭命令 ./shutdown.sh 查看 ...