http://www.lydsy.com/JudgeOnline/problem.php?id=1927

题意:n个点的无向图。m条加权边。只能从编号小的到编号大的。可以瞬移,瞬移有时间。每个点只能访问一次。问访问所有n个点的最少时间。(N<=800, M<=15000)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const int N=2005, oo=~0u>>2;
int ihead[N], cnt=1, q[N], n, p[N], d[N], vis[N];
struct dat { int next, to, cap, from, w; }e[N*N];
void add(int u, int v, int c, int w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;
}
bool spfa(int s, int t) {
for1(i, 0, t) vis[i]=0, d[i]=oo;
d[s]=0; int front=0, tail=0;
q[tail++]=s;
while(front!=tail) {
int u=q[front++], v; if(front==N) front=0; vis[u]=0;
rdm(u, i) if(e[i].cap) {
v=e[i].to;
if(d[v]>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
p[v]=i;
if(!vis[v]) {
vis[v]=1;
if(d[v]<d[q[front]]) {
--front; if(front<0) front+=N;
q[front]=v;
}
else {
q[tail++]=v; if(tail==N) tail=0;
}
}
}
}
}
return d[t]!=oo;
}
int mcf(int s, int t) {
int ret=0, f, u;
while(spfa(s, t)) {
f=oo;
for(u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);
for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;
ret+=f*d[t];
}
return ret;
}
int main() {
read(n);
int m=getint();
int s=0, t=n+n+1;
for1(i, 1, n) add(s, i+n, 1, getint());
for1(i, 1, n) add(s, i, 1, 0);
for1(i, 1, n) add(i+n, t, 1, 0);
for1(i, 1, m) {
int x=getint(), y=getint();
if(x>y) swap(x, y);
add(x, y+n, 1, getint());
}
printf("%d\n", mcf(s, t));
return 0;
}

好神的题!!!!!!!!!!!!!!!!!!!

建图:

  • 源向i+n连容量1,费用为能力爆发的费用
  • 源向i连容量1,费用为0
  • i+n向汇连容量1,费用0
  • 如果有边x<y,连x到y+n容量为1,费用为时间

然后跑最小费用最大流

为什么这样就行了呢?

由于每一个点都访问到,因此只需要连边即可,一个是到了i点,我们从这个点选择下一个点。一个是到过i点(即上面的i+n),用来标记这个点是否已经到过!

所以我们只需要考虑每个已到过的点是如何到的即可。

1. 顺移到的,这样不需要考虑是从哪个转移过来的。

2. 连边过来了,由于每一个点肯定访问过了,所以无论哪个点都能做自己的前驱。

所以按照上面的连边就行了。

 

【BZOJ】1927: [Sdoi2010]星际竞速(费用流)的更多相关文章

  1. BZOJ 1927: [Sdoi2010]星际竞速 费用流

    1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. BZOJ 1927: [Sdoi2010]星际竞速(费用流)

    传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...

  3. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

  4. BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

    拆点,费用流... ----------------------------------------------------------------------------- #include< ...

  5. BZOJ 1927: [Sdoi2010]星际竞速 [上下界费用流]

    1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移 ...

  6. BZOJ 1927: [Sdoi2010]星际竞速

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2051  Solved: 1263[Submit][Stat ...

  7. Bzoj 1927: [Sdoi2010]星际竞速(网络流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. Luogu2469 SDOI2010 星际竞速 费用流

    传送门 发现它的本质是求一个费用最小的路径覆盖 最小路径覆盖是网络流23题中的一个比较典型的模型 所以考虑相似的建边 因为每一个点要恰好经过一次,是一个有上下界的网络流,故拆点,星球\(i\)拆成\( ...

  10. bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】

    果然还是不会建图- 设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量. 因为每个点只能经过 ...

随机推荐

  1. 【OpenStack】OpenStack系列6之Sheepdog环境搭建

    准备 repo配置 yum clean all yum makecache yum install -y make automake autoconf gcc nss-devel wget git g ...

  2. DOS命令符基本操作

    怎么改变DOS默认路径 开始->所有程序->附件->命令提示符,在“命令提示符”上右键,选择“属性”,(或者在快捷方式上点击属性)会弹出一个“命令提示符 属性”对话框,可以通过修改该 ...

  3. 《ASP.NET1200例》<asp:DataList>分页显示图片

    aspx页面代码 <asp:DataList ID="dlPhoto" runat="server" Height="137px" W ...

  4. sybaseIQ索引类型和使用注意事项

    1. FP(Fast Projection)此索引为默认的索引形式,在创建表时系统自动设置此索引. 特点:用于SELECT.LIKE '%sys%'.SUM(A+B).JOIN操作等语句. 此类型索引 ...

  5. eclipse的c++工程开启c++11

    右击工程->Properties->C/C++ Builder->Setting->Tool Setting->Miscellanous->Other Flags添 ...

  6. cocos2d c++ 代码规范(译文)

    原文在http://cocos2d-x.org/projects/cocos2d-x/wiki/Cocos2d_c++_coding_style,我觉得这个规范非常全面,写的非常好,我只捡一些我认为比 ...

  7. [MACOS] Mac上的抓包工具Charles

    转载自: http://blog.csdn.net/jiangwei0910410003/article/details/41620363 今天就来看一下Mac上如何进行抓包,之前有一篇文章介绍了使用 ...

  8. struts2 标签 --<<s:url >

    Struts2中的链接标签 <s:url>和<s:a> 普通链接 Web程序中最普通的应用是链接到其他页面,下面看Welcome.jsp. <%@ page conten ...

  9. 数码管的封装实验 --- verilog

    数码管的封装实验.显示使能信号置高才可以显示.对于小数点不用,故不显示. 数码管分为共阴数码管和共阳数码管,数码管不同,编码不同,下面是两种数码管显示0-F以及消隐的不同编码: 共阴数码管(高有效): ...

  10. snmp v3

    http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=7654720&id=3355515 http://tydldd.ite ...