http://www.lydsy.com/JudgeOnline/problem.php?id=1927

题意:n个点的无向图。m条加权边。只能从编号小的到编号大的。可以瞬移,瞬移有时间。每个点只能访问一次。问访问所有n个点的最少时间。(N<=800, M<=15000)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const int N=2005, oo=~0u>>2;
int ihead[N], cnt=1, q[N], n, p[N], d[N], vis[N];
struct dat { int next, to, cap, from, w; }e[N*N];
void add(int u, int v, int c, int w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;
}
bool spfa(int s, int t) {
for1(i, 0, t) vis[i]=0, d[i]=oo;
d[s]=0; int front=0, tail=0;
q[tail++]=s;
while(front!=tail) {
int u=q[front++], v; if(front==N) front=0; vis[u]=0;
rdm(u, i) if(e[i].cap) {
v=e[i].to;
if(d[v]>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
p[v]=i;
if(!vis[v]) {
vis[v]=1;
if(d[v]<d[q[front]]) {
--front; if(front<0) front+=N;
q[front]=v;
}
else {
q[tail++]=v; if(tail==N) tail=0;
}
}
}
}
}
return d[t]!=oo;
}
int mcf(int s, int t) {
int ret=0, f, u;
while(spfa(s, t)) {
f=oo;
for(u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);
for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;
ret+=f*d[t];
}
return ret;
}
int main() {
read(n);
int m=getint();
int s=0, t=n+n+1;
for1(i, 1, n) add(s, i+n, 1, getint());
for1(i, 1, n) add(s, i, 1, 0);
for1(i, 1, n) add(i+n, t, 1, 0);
for1(i, 1, m) {
int x=getint(), y=getint();
if(x>y) swap(x, y);
add(x, y+n, 1, getint());
}
printf("%d\n", mcf(s, t));
return 0;
}

好神的题!!!!!!!!!!!!!!!!!!!

建图:

  • 源向i+n连容量1,费用为能力爆发的费用
  • 源向i连容量1,费用为0
  • i+n向汇连容量1,费用0
  • 如果有边x<y,连x到y+n容量为1,费用为时间

然后跑最小费用最大流

为什么这样就行了呢?

由于每一个点都访问到,因此只需要连边即可,一个是到了i点,我们从这个点选择下一个点。一个是到过i点(即上面的i+n),用来标记这个点是否已经到过!

所以我们只需要考虑每个已到过的点是如何到的即可。

1. 顺移到的,这样不需要考虑是从哪个转移过来的。

2. 连边过来了,由于每一个点肯定访问过了,所以无论哪个点都能做自己的前驱。

所以按照上面的连边就行了。

 

【BZOJ】1927: [Sdoi2010]星际竞速(费用流)的更多相关文章

  1. BZOJ 1927: [Sdoi2010]星际竞速 费用流

    1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. BZOJ 1927: [Sdoi2010]星际竞速(费用流)

    传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...

  3. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

  4. BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

    拆点,费用流... ----------------------------------------------------------------------------- #include< ...

  5. BZOJ 1927: [Sdoi2010]星际竞速 [上下界费用流]

    1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移 ...

  6. BZOJ 1927: [Sdoi2010]星际竞速

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2051  Solved: 1263[Submit][Stat ...

  7. Bzoj 1927: [Sdoi2010]星际竞速(网络流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. Luogu2469 SDOI2010 星际竞速 费用流

    传送门 发现它的本质是求一个费用最小的路径覆盖 最小路径覆盖是网络流23题中的一个比较典型的模型 所以考虑相似的建边 因为每一个点要恰好经过一次,是一个有上下界的网络流,故拆点,星球\(i\)拆成\( ...

  10. bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】

    果然还是不会建图- 设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量. 因为每个点只能经过 ...

随机推荐

  1. MySQL 如何只导出 指定的表 的表结构和数据 ( 转 )

    MySQL 如何只导出 指定的表 的表结构和数据 ( 转 ) 2011-01-04 15:03:33 分类: MySQL MySQL 如何只导出 指定的表 的表结构和数据 导出更个库的表结构如下:my ...

  2. 【Hibernate】Hibernate系列6之HQL查询

    HQL查询 6.1.概述 6.2.分页查询 6.3.命名查询 6.4.投影查询-部分字段查询 6.5.报表查询 6.6.迫切左外连接.左外连接 6.7.迫切内连接.内连接 6.8.QBC查询.本地查询

  3. 【SpringMVC】SpringMVC系列12之数据类型转换、格式化、校验

      12.数据类型转换.格式化.校验 12.1.数据绑定流程     Spring MVC 主框架将 ServletRequest 对象及目标方法的入参实例传递给 WebDataBinderFacto ...

  4. 【UGUI】Canvas和Rect Transform

    Canvas 1.所有的UI元件都需要放在Canvas里 2.UI元件的绘制顺序,与在 Hierarchy的顺序相同,在上面的元素会先被绘制,位于后续绘制元素的下面 3.可以选择3种不同的渲染模式: ...

  5. Android Studio项目整合PullToRefresh的问题记录

    PullToRefresh下拉刷新在App中应用非常频繁,然而PullToRefresh是在ADT下开发完成的.如果要将其整合到Android Studio目录下的话颇费周折.前面的文章“Androi ...

  6. iOS 转载一篇利用dispatch_once创建单例的文章

    感谢文章原作者,http://bj007.blog.51cto.com/1701577/649413

  7. 【python】Python标准库defaultdict模块

    来源:http://www.ynpxrz.com/n1031711c2023.aspx Python标准库中collections对集合类型的数据结构进行了很多拓展操作,这些操作在我们使用集合的时候会 ...

  8. 【图文详解】scrapy安装与真的快速上手——爬取豆瓣9分榜单

    写在开头 现在scrapy的安装教程都明显过时了,随便一搜都是要你安装一大堆的依赖,什么装python(如果别人连python都没装,为什么要学scrapy….)wisted, zope interf ...

  9. fork

    #include <unistd.h> #include <stdlib.h> #include <stdio.h> #include <fcntl.h> ...

  10. 4.抽象工厂模式(Abstract Factory)

    using System; using System.Reflection; namespace ConsoleApplication1 { class Program { static void M ...