对于树边显然只需要减少权值,对于非树边显然只需要增加权值

设i不为树边,j为树边

X[i]:i增加量

X[j]:j减少量

C[i]:修改1单位i的代价

对于每条非树边i(u,v),在树上u到v路径上的所有边j都需要满足

$W_i+X_i\geq W_j-X_j$

$X_i+X_j\geq W_j-W_i$

最后我们要最小化$\sum C_iX_i$

将矩阵转置,得到对偶问题,用线性规划单纯形法求解

#include<cstdio>
#define rep(i,l,n) for(int i=l;i<=n;i++)
const int N=1001,M=4000,inf=~0U>>2;
int n,m,a[N][M],nxt[M],s,t,c,nn;
int g[N],Nxt[N],v[N],ed,pre[N],id[N][N],head,tail,q[N];
inline void cal(int l,int e){
a[l][e]=-1;t=M-1;
rep(i,0,m)if(a[l][i])nxt[t]=i,t=i;nxt[t]=-1;
rep(i,0,n)if(i!=l&&(t=a[i][e])){
a[i][e]=0;
for(int j=nxt[M-1];~j;j=nxt[j])a[i][j]+=a[l][j]*t;
}
}
int work(){
for(;;){int min=inf,l=0,e=0;
rep(i,1,m)if(a[0][i]>0){e=i;break;}
if(!e)return a[0][0];
rep(i,1,n)if(a[i][e]<0&&a[i][0]<min)min=a[i][0],l=i;
cal(l,e);
}
}
struct Edge{int u,v,w,f,a,b,c;}E[N];
inline void add(int x,int y,int z){v[++ed]=y;id[x][y]=z;Nxt[ed]=g[x];g[x]=ed;}
inline void bfs(int X,int y,int z){
int i,x;
for(i=1;i<=nn;i++)pre[i]=0;
q[head=tail=0]=X;
while(head<=tail)for(i=g[x=q[head++]];i;i=Nxt[i])if(!pre[v[i]]&&v[i]!=X)pre[q[++tail]=v[i]]=x;
for(;pre[y];y=pre[y]){
++m;
i=id[y][pre[y]];
a[z][m]=a[i][m]=-1;
a[0][m]=E[i].w-E[z].w;
}
}
int main(){
scanf("%d%d",&nn,&n);
rep(i,1,n){
scanf("%d%d%d%d%d%d",&E[i].u,&E[i].v,&E[i].w,&E[i].f,&E[i].a,&E[i].b);
E[i].c=E[i].f?E[i].b:E[i].a;
if(E[i].f)add(E[i].u,E[i].v,i),add(E[i].v,E[i].u,i);
}
rep(i,1,n)if(!E[i].f)bfs(E[i].u,E[i].v,i);
rep(i,1,n)a[i][0]=E[i].c;
return printf("%d",work()),0;
}

  

BZOJ3118 : Orz the MST的更多相关文章

  1. BZOJ3118 Orz the MST 【单纯形 + 生成树】

    题目链接 BZOJ3118 题解 少有的单纯形好题啊 我们先抽离出生成树 生成树中的边只可能减,其它边只可能加 对于不在生成树的边,其权值一定要比生成树中其端点之间的路径上所有的边都大 然后就是一个最 ...

  2. bzoj3118: Orz the MST(线性规划+单纯形法)

    传送门 不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值 对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边 设其中一条边为\ ...

  3. bzoj 3118: Orz the MST(单纯形)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3118 题意:给出一个图以及图中指定的n-1条边组成的生成树.每条边权值加1或者减去 ...

  4. BZOJ 3118 Orz the MST

    权限题qwq 如果我们要使得某棵生成树为最小生成树,那么上面的边都不能被替代,具体的,对于一个非树边,它的权值要\(\ge\)它两端点在树上的路径上的所以边的权值,所以对于每个非树边就可以对一些树边列 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. POJ1679The Unique MST(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25203   Accepted: 8995 D ...

  7. HDU5627--Clarke and MST (bfs+位运算)

    http://www.cnblogs.com/wenruo/p/5188495.html Clarke and MST Time Limit: 2000/1000 MS (Java/Others) M ...

  8. MST系列

    1.POJ2485 Highways 蛮水的 数组一开始开小了卡了一会儿 我可能是个傻逼 #include<iostream> #include<cstdio> #includ ...

  9. poj 1639 Picnic Planning 度限制mst

    https://vjudge.net/problem/POJ-1639 题意: 有一群人,他们要去某一个地方,每个车可以装无数个人,给出了n条路,包含的信息有路连接的地方,以及路的长度,路是双向的,但 ...

随机推荐

  1. poj 1833

    http://poj.org/problem?id=1833 next_permutation这个函数是用来全排列的,按字典的序进行排列,当排列无后继的最大值时,会执行字典升序排列,相当于排序: 当排 ...

  2. 【转】 Mybatis/Ibatis,数据库操作的返回值

    该问题,我百度了下,根本没发现什么有价值的文章:还是看源代码(详见最后附录)中的注释,最有效了!insert,返回值是:新插入行的主键(primary key):需要包含<selectKey&g ...

  3. 25.在从1到n的正数中1出现的次数[NumberOf1Between1_N]

    [题目] 输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1 的数字有1,10,11和12,1一共出现了5次. [分析] 这是一道广为流传的goo ...

  4. 菜单栏展开和收起效果(纯js)

    2014年6月25日 15:36:29 需要关注的是: 1.用cookie保存用户当前点击的菜单项,不打扰后端代码 2.通过数学计算得到要显示和隐藏的div 3.点击事件是动态绑定到a标签上的,因此当 ...

  5. Java for LeetCode 190 Reverse Bits

    Reverse bits of a given 32 bits unsigned integer. For example, given input 43261596 (represented in ...

  6. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  7. 使用apktool工具遇到could not decode arsc file的解决办法

    问题详情: 当前环境为 win7 64位  jdk1.7  apktool.jar(版本1.5.2)   apktool(版本windows-r05-ibot) 使用的反编译工具和apk文件为 反编译 ...

  8. 谈JavaScript代码封装

    前言 也算老生常谈的问题了,再深入搞一搞怎么玩儿封装,如果看到这篇文章的你,正好你也是追求完美的代码洁癖狂者,那么这篇文章相信非常适合你. 举一个例子,编写一个Person类,具有name和birth ...

  9. Linq学习笔记---Linq to Sql之where

    http://kb.cnblogs.com/page/42465/ Where操作 适用场景:实现过滤,查询等功能. 说明:与SQL命令中的Where作用相似,都是起到范围限定也就是过滤作用的,而判断 ...

  10. ***微信公众平台开发: 获取用户基本信息+OAuth2.0网页授权

    本文介绍如何获得微信公众平台关注用户的基本信息,包括昵称.头像.性别.国家.省份.城市.语言.本文的方法将囊括订阅号和服务号以及自定义菜单各种场景,无论是否有高级接口权限,都有办法来获得用户基本信息, ...