福建师大附中链接:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1211

【问题描述】

我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

每个工件的每个工序称为一个操作,我们用记号j-k表示一个操作,其中j为1到n中的某个数字,为工件号;k为1到m中的某个数字,为工序号,例如2-4表示第2个工件第4道工序的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

例如,当n=3,m=2时,“1-1,1-2,2-1,3-1,3-2,2-2”就是一个给定的安排顺序,即先安排第1个工件的第1个工序,再安排第1个工件的第2个工序,然后再安排第2个工件的第1个工序,等等。

一方面,每个操作的安排都要满足以下的两个约束条件。

(1) 对同一个工件,每道工序必须在它前面的工序完成后才能开始;

(2) 同一时刻每一台机器至多只能加工一个工件。

另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为“1 1 2 3 3 2”。

还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

例如,取n=3,m=2,已知数据如下:

工件号

机器号/加工时间

工序1

工序2

1

1/3

2/2

2

1/2

2/5

3

2/2

1/4

则对于安排顺序“1 1 2 3 3 2”,下图中的两个实施方案都是正确的。但所需要的总时间分别是10与12。

当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条件(1)(2)的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证约束条件(1)(2)的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算出该方案完成全部任务所需的总时间。

【输入文件】

输入文件jsp.in 的第1行为两个正整数,用一个空格隔开:m n(其中m(<20)表示机器数,n(<20)表示工件数)

第2行: 个用空格隔开的数,为给定的安排顺序。

接下来的2n行,每行都是用空格隔开的m个正整数,每个数不超过20。

其中前n行依次表示每个工件的每个工序所使用的机器号,第1个数为第1个工序的机器号,第2个数为第2个工序机器号,等等。

后n行依次表示每个工件的每个工序的加工时间。

可以保证,以上各数据都是正确的,不必检验。

【输出文件】

输出文件jsp.out只有一个正整数,为最少的加工时间。

【输入样例】

2 3

1 1 2 3 3 2

1 2

1 2

2 1

3 2

2 5

2 4

【输出样例】

10

代码

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct cc{
int time[],jiqi[],pgongxv,pdis;//point==p
}node[]; int m,n,shunxv[],zhou[][],ans; void init_(){
scanf("%d%d",&m,&n);//m条工序 n个机器
for(int i=;i<=n*m;i++) scanf("%d",&shunxv[i]);
for(int i=;i<=n;i++){
node[i].pgongxv=;node[i].pdis=;
for(int j=;j<=m;j++)
scanf("%d",&node[i].jiqi[j]);
} for(int i=;i<=n;i++){
for(int j=;j<=m;j++)
scanf("%d",&node[i].time[j]);
} } int check(int hang,int time,int dis){
for(int i=dis;i<dis+time;i++){
if(zhou[hang][i]==) return ;
}
for(int i=dis;i<dis+time;i++){
zhou[hang][i]=;
}
// puts("#");
return ;
} void slove(int k){
for(int i=node[k].pdis+;i<=;i++){
if(zhou[ node[k].jiqi[ node[k].pgongxv ] ][i] !=) continue;
if(check( node[k].jiqi[ node[k].pgongxv ] , node[k].time[ node[k].pgongxv ] , i)){
node[k].pdis=i+ node[k].time[ node[k].pgongxv ]-;
++node[k].pgongxv;
/* if(k==2){
cout<<node[k].pdis<<endl;
}*/
break;
}
}
} void print(){
for(int i=;i<=;i++) printf("%d",zhou[][i]);
puts("");
for(int i=;i<=;i++) printf("%d",zhou[][i]);
puts("");puts("");
} int main(){
// freopen("01.txt","r",stdin);
init_(); for(int i=;i<=n*m;i++){
slove(shunxv[i]);
ans=max(ans,node[shunxv[i]].pdis);
// print();
} printf("%d\n",ans);
return ;
}

要是没有结构体我就要跪了

希望我自己能看懂自己写的是啥

然后看了下答案,最长的也就280+,所以zhou数组不用开这么大

总之语文能力要好,可怕的题目

NOIp 2006 作业调度方案 Label:坑 模拟(tyvj你不给我ac,我就把名字献给附中oj)的更多相关文章

  1. NOIP 2006 作业调度方案

    [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示 ...

  2. 洛谷 P1065 作业调度方案

    P1065 作业调度方案 题目描述 我们现在要利用 mm 台机器加工 nn 个工件,每个工件都有 mm 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每 ...

  3. P1065 作业调度方案

    题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j−k表示一个 ...

  4. 洛谷P1065 作业调度方案

    P1065 作业调度方案 题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作 ...

  5. [NOIP2006] 提高组 洛谷P1065 作业调度方案

    题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示一个 ...

  6. NOIP2006 作业调度方案

    1.             作业调度方案 (jsp.pas/c/cpp) [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工 ...

  7. 题解 【NOIP2006】作业调度方案

    [NOIP2006]作业调度方案 Description 我们现在要利用 m 台机器加工 n 个工件,每个工件都有 m 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间 ...

  8. Luogu 1060 开心的金明 / NOIP 2006 (动态规划)

    Luogu 1060 开心的金明 / NOIP 2006 (动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨 ...

  9. NOIP 2006 提高组 t1 能量项链

    题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...

随机推荐

  1. HDU 1707 简单模拟 Spring-outing Decision

    Spring-outing Decision Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. 【OpenStack】OpenStack系列11之namaspace&openvswitch原理实践

    Namespace实现网络隔离与互通 新建ns: ip netns add foo 查看ns: ip netns 查看ns详细配置: ip netns exec foo ip addr 设置ns内部l ...

  3. InnoDB主键设计

    InnoDB是clustered-index table,因此对于InnoDB而言,主键具有特殊意义. 可以通过主键直接定位到对应的某一数据行记录的物理位置,主键索引指向对应行记录,其他索引则都指向主 ...

  4. net发送邮件

    对于.NET而言,从2.0开始,发邮件已经是一件非常easy 的事了.下面我给出一个用C#群发邮件的实例,做了比较详细的注解,希望对有需要的朋友有所help.看了这篇BLOG,如果你还不会用.NET发 ...

  5. kettle转换JavaScript获取命令行参数

    日常开发中由于很多参数是变化的,需要在部署时才能确定.而写在配置文件里又显得很笨重,因而可以运行时实时指定.那么kettle是怎么获取命令行中的参数的呢? kettle可以通过转换里的JavaScri ...

  6. 使用kettle转换中的JavaScript对密码进行加密和解密

    日常开发中,为了确保账号和密码的安全,时常要对密码进行加密和解密.然而kettle是怎么对密码进行加密和解密的呢? 下面的代码需要再转换中的JavaScript中运行. var encrypted_p ...

  7. 江哥的dp题a(codevs 4815)

    题目描述 Description 给出一个长度为N的序列A(A1,A2,A3,...,AN).现选择K个互不相同的元素,要求: 1.两两元素互不相邻 2.元素值之和最大 输入描述 Input Desc ...

  8. 深入剖析PHP输入流 php://input(与POST/GET的区别)

    PHP输入流php://input 转:http://www.nowamagic.net/academy/detail/12220520 在使用xml-rpc的时候,server端获取client数据 ...

  9. div img居中的方式

    想让div中的img水平和垂直都居中,可以将img放在div中,img的样式:height:100%;width:100%; 外部定义div的宽度和高度,然后定义line-height行高,div外部 ...

  10. ytu 1998:C语言实验——删除指定字符(水题)

    C语言实验——删除指定字符 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 327  Solved: 211[Submit][Status][Web Boa ...