题意:a<=x<=b,c<=y<=d,求满足gcd(x,y)=k的数对(x,y)的数量         ((x,y)和(y,x)不算同一个)

比hdu1695多加了个下界,还有顺序不一样的也算上了。

因为G(x,y)本来就是顺序不一样的算不同方案,所以这题的公式就是:

Ans=G(b/k,d/k)-G((a-1)/k,d/k)-G(b/k,(c-1)/k)+G((a-1)/k,(c-1)/k)

但是本题数据很大,直接计算会TLE,

有一个优化:http://www.cnblogs.com/zhsl/p/3269288.html

//calc G(a,b)

LL _G(int a,int b)          //朴素算法
{
int tx=min(a,b),ty=max(a,b);
LL ans = ;
for(int i = ; i <= tx; i++)
ans += (LL)mu[i]*(tx/i)*(ty/i);
return ans;
} LL G(int n,int m) //加分块优化
{
LL ans = ;
if(n > m) swap(n,m);
for(int i = , la = ; i <= n; i = la+)
{
la = min(n/(n/i),m/(m/i));
ans += (LL)(msum[la] - msum[i-])*(n/i)*(m/i); //事先预处理:msum[n]=SUM(mu[1..n])
}
return ans;
}

不知为什么自己测AC了结果bzoj上一直RuntimeError......要完蛋了orz,改成scanf和printf就过了

 #include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
#define LL long long
#define MMX 50100
LL mu[MMX],msum[MMX];
bool check[MMX];
int prime[MMX];
int a,b,c,d,k,T; void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MMX; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MMX) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
msum[]=mu[];
for (int i=;i<=MMX;i++)
msum[i]=msum[i-]+mu[i];
} //calc G(a,b)
LL _G(int a,int b) //朴素算法
{
int tx=min(a,b),ty=max(a,b);
LL ans = ;
for(int i = ; i <= tx; i++)
ans += (LL)mu[i]*(tx/i)*(ty/i);
return ans;
} LL G(int n,int m) //加分块优化
{
LL ans = ;
if(n > m) swap(n,m);
for(int i = , la = ; i <= n; i = la+)
{
la = min(n/(n/i),m/(m/i));
ans += (LL)(msum[la] - msum[i-])*(n/i)*(m/i); //事先预处理:msum[n]=SUM(mu[1..n])
}
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); cin>>T;
Moblus();
while (T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
//cout<<G(b/k,d/k)<<" "<<G((a-1)/k,d/k)<<" "<<G(b/k,(c-1)/k)<<" "<<G((a-1)/k,(c-1)/k)<<endl;
LL res=G(b/k,d/k)-G((a-)/k,d/k)-G(b/k,(c-)/k)+G((a-)/k,(c-)/k);
printf("%lld\n",res);
}
return ;
}

实测:

朴素算法:

1005 root 1002 Accepted 380K 47400MS G++ 1.6K 2014-11-15 15:37:03

优化算法:

1014 root 1002 Accepted 952K 6011MS G++ 1.81K 2014-11-15 17:17:59

BZOJ2301 莫比乌斯反演的更多相关文章

  1. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  2. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  3. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  4. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  5. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  6. bzoj2301(莫比乌斯反演+分块)

    传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...

  7. [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

    题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...

  8. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

  9. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

随机推荐

  1. js中的垃圾回收机制

    代码回收规则如下: 1.全局变量不会被回收. 2.局部变量会被回收,也就是函数一旦运行完以后,函数内部的东西都会被销毁. 3.只要被另外一个作用域所引用就不会被回收  (闭包)

  2. 课题:如何培养自己的SEO资源

    课题:如何培养自己的SEO资源 问:做SEO最重要的是什么?[针对性的流量]答:看获取一样东西的门槛.稀缺性,人人可得价值不大外链 内容 流量[正确]针对性的自然流量是用户自愿带来的,价值高,能形成购 ...

  3. WindowsPhone8解锁提示IpOverUsbSvc问题

    问题如图: 一般都是系统未启动或者未安装该服务. 1.使用sc命令查询是否存在IpOverUsbSvc服务 Cmd执行Sc query IpOverUsbSvc 结果如下,如果可以找到服务,state ...

  4. Linux 网络编程三(socket代码详解)

    //网络编程客户端 #include <stdio.h> #include <stdlib.h> #include <string.h> #include < ...

  5. C语言 二级指针内存模型①

    //二级指针第一种内存模型 #include<stdio.h> #include<stdlib.h> //说明:①:类似于int a[5]={0},数组名a是一维数组a中首元素 ...

  6. Linux非root用户安装jdk和tomcat

    转载自:http://blog.csdn.net/wuyigong111/article/details/17410661,进行部分修改 创建一个用户 sgmm,并在其用户目录里面安装 jdk和tom ...

  7. HMAC-MD5算法原理及实现

    以下是分析节选,对于更详细的描述可以查阅RFC2104文档.     HMAC需要一个加密用散列函数(表示为H)和一个密钥K. 假设H是一个将数据块用一个基本的迭代压缩函数来加密的散列函数. 用B来表 ...

  8. Linux及安全期中总结

    Chapter1 往期博客传送门 Linux内核分析——第一周学习笔记 Linux内核分析——第二周学习笔记 Linux内核分析——第三周学习笔记 <Linux内核设计与实现>学习记录一 ...

  9. 信息安全系统设计基础exp_1

    详见搭档20135322郑伟博客链接:http://www.cnblogs.com/zhengwei0712/

  10. 零散知识记录-一个MQ问题

    [背景]我有一项零散工作:维护大部门的一台测试公用MQ服务器.当大部分MQ被建立起来,编写了维护手册,大家都按照规程来后,就基本上没有再动过它了.周五有同学跟我反映登录不进去了,周日花了1个小时来解决 ...