BZOJ2301 莫比乌斯反演
题意:a<=x<=b,c<=y<=d,求满足gcd(x,y)=k的数对(x,y)的数量 ((x,y)和(y,x)不算同一个)
比hdu1695多加了个下界,还有顺序不一样的也算上了。
因为G(x,y)本来就是顺序不一样的算不同方案,所以这题的公式就是:
Ans=G(b/k,d/k)-G((a-1)/k,d/k)-G(b/k,(c-1)/k)+G((a-1)/k,(c-1)/k)
但是本题数据很大,直接计算会TLE,
有一个优化:http://www.cnblogs.com/zhsl/p/3269288.html
//calc G(a,b) LL _G(int a,int b) //朴素算法
{
int tx=min(a,b),ty=max(a,b);
LL ans = ;
for(int i = ; i <= tx; i++)
ans += (LL)mu[i]*(tx/i)*(ty/i);
return ans;
} LL G(int n,int m) //加分块优化
{
LL ans = ;
if(n > m) swap(n,m);
for(int i = , la = ; i <= n; i = la+)
{
la = min(n/(n/i),m/(m/i));
ans += (LL)(msum[la] - msum[i-])*(n/i)*(m/i); //事先预处理:msum[n]=SUM(mu[1..n])
}
return ans;
}
不知为什么自己测AC了结果bzoj上一直RuntimeError......要完蛋了orz,改成scanf和printf就过了
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
#define LL long long
#define MMX 50100
LL mu[MMX],msum[MMX];
bool check[MMX];
int prime[MMX];
int a,b,c,d,k,T; void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MMX; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MMX) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
msum[]=mu[];
for (int i=;i<=MMX;i++)
msum[i]=msum[i-]+mu[i];
} //calc G(a,b)
LL _G(int a,int b) //朴素算法
{
int tx=min(a,b),ty=max(a,b);
LL ans = ;
for(int i = ; i <= tx; i++)
ans += (LL)mu[i]*(tx/i)*(ty/i);
return ans;
} LL G(int n,int m) //加分块优化
{
LL ans = ;
if(n > m) swap(n,m);
for(int i = , la = ; i <= n; i = la+)
{
la = min(n/(n/i),m/(m/i));
ans += (LL)(msum[la] - msum[i-])*(n/i)*(m/i); //事先预处理:msum[n]=SUM(mu[1..n])
}
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); cin>>T;
Moblus();
while (T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
//cout<<G(b/k,d/k)<<" "<<G((a-1)/k,d/k)<<" "<<G(b/k,(c-1)/k)<<" "<<G((a-1)/k,(c-1)/k)<<endl;
LL res=G(b/k,d/k)-G((a-)/k,d/k)-G(b/k,(c-)/k)+G((a-)/k,(c-)/k);
printf("%lld\n",res);
}
return ;
}
实测:
朴素算法:
1005 | root | 1002 | Accepted | 380K | 47400MS | G++ | 1.6K | 2014-11-15 15:37:03 |
优化算法:
1014 | root | 1002 | Accepted | 952K | 6011MS | G++ | 1.81K | 2014-11-15 17:17:59 |
BZOJ2301 莫比乌斯反演的更多相关文章
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块
问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- bzoj2301(莫比乌斯反演+分块)
传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...
- [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]
题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...
- bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
随机推荐
- YII获取刚插入数据的id主键
单条数据时model->attributes['id']; 循环插入时使用 Yii::app()->db->getLastInsertID() 获取 循环插入时需要每次插入后重置 m ...
- UICollectionView移动
collectionView在iOS9中发布了一个可以移动cell的新特性,实现如下: 1.创建collectionView并设置代理 - (UICollectionView *)collection ...
- 【转】【MySQL】SQLSTATE详解
根据 X/Open 和 SQL Access Group SQL CAE 规范 (1992) 所进行的定义,SQLERROR 返回 SQLSTATE 值.SQLSTATE 值是包含五个字符的字符串 . ...
- flex 3 rows layout
html,body{height:100%} .wraper{ display:flex; flex-direction:column; height:100%; flex-wrap: nowrap; ...
- 基于Microsoft Azure、ASP.NET Core和Docker的博客系统
欢迎阅读daxnet的新博客:一个基于Microsoft Azure.ASP.NET Core和Docker的博客系统 2008年11月,我在博客园开通了个人帐号,并在博客园发表了自己的第一篇博客 ...
- android 中打 Log 的一些技巧
在 android 平台上搞开发工作,会经常用到一些 Log 输出调试信息. 众所周知,android 中有五种类型的 Log , v, d, i, w, e 这里就不再赘 述 (如果对这些不了解的朋 ...
- C语言 二级指针内存模型混合实战
//二级指针内存模型混合实战 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #i ...
- .NET面试题解析(07)-多线程编程与线程同步 (转)
http://www.cnblogs.com/anding/p/5301754.html 系列文章目录地址: .NET面试题解析(00)-开篇来谈谈面试 & 系列文章索引 关于线程的知识点其实 ...
- JS 之原型,实例,构造函数之间的关系
JS是面向对象的语言,函数也是对象.下面大致介绍下实例,原型与构造函数之间的关系. 构造函数模式 function Person(name,age){ this.name = name; this.a ...
- Android调用蓝牙打印机
首先需要一个jar包,bluesdk,请自行百度. 具体排版样式跟网络打印机打印排版样式实现一样,这里不多叙述,只贴一个实现方法代码.蓝牙打印机使用前需要先跟手机配对,可以保存在本地,记录下地址,这里 ...