回归(regression)的理解(regressor,回归子)
1. 基本概念
回归(regression)是监督学习(given {(xi,yi)})的一个重要分类。回归用于预测输入变量(自变量,Xi)与输出变量(因变量,Yi) 之间的关系,特定是当输入变量的值发生变化时,输出变量的值随之发生的变化。
回归模型正是表示从输入变量(xi∈Rn)到输出变量(y∈R,也就是一个一维的数值,如果输出也是多维呢?至少不是一个分类任务了)之间映射的函数。回归问题的学习等价于函数拟合,选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据。
- 学习 ⇒ 学习系统(learning phase)⇒ 对象(输入)是训练数据
- 预测 ⇒ 预测系统(predicate phase)⇒ 对象(输入)是测试数据
回归问题分为学习和预测两个过程。首先给定一个训练数据集:
学习系统基于训练数据构建一个模型,即函数 Y=f(X);对新的输入 xN+1,预测系统根据学习到的模型 Y=f(X),确定相应的输出(预测输出)yN+1。
- 回归问题按照输入变量的个数,分为一元回归和多元回归;
- 按照输入变量和输出变量之间关系(即模型的类型),分为线性模型和非线性模型;
二者一组合,就得出四种回归的分类了:一元线性,一元非线性,多元线性,多元非线性。
回归学习最常用到的损失函数是平方损失函数,在此问题下,回归问题可以由著名的最小二乘法(least squares)求解。
比如注明的线性回归问题:
2. regressor 等概念的认识
Linear Regression with One Regressor
考虑如下的线性方程,
- β0 是(直线的)截距;
- β1 是斜率;
该线性方程,是一个具有单回归子(regressor)的回归模型,
- Y 是因变量,
- X 是独立变量(自变量)或者叫回归子(regressor)
β0+β1Xi 表示着总体回归函数,
- β0,β1 是参数(parameters)或者系数(coefficients)
ui 则是误差项(error term)
3. exponential regression model
What does a “closed-form solution” mean?
考虑如下的简单指数型回归模型,其唯一的 regressor 就是截距:
目标函数为:
求和号展开,并对 α 求导,置 0,最终得,α⋆=lny¯
回归(regression)的理解(regressor,回归子)的更多相关文章
- 浅谈回归Regression(一)
一.什么是回归? 孩子的身高是否与父母有关? 实际上,父母和孩子的身高是受到回归效应影响的.在时间纵轴上受影响.具有随机性的事物,无不遵循这一规律. 只要数据足够大,人类的身高或者智商,都有趋于平均值 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- Keras(三)backend 兼容 Regressor 回归 Classifier 分类 原理及实例
backend 兼容 backend,即基于什么来做运算 Keras 可以基于两个Backend,一个是 Theano,一个是 Tensorflow 查看当前backend import keras ...
- 从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- 利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
随机推荐
- 在 Swift 项目中实现侧滑菜单-利用 SWRevealViewController
你可以完全自己手动写一个侧滑菜单,但是现在在 GitHub 上面已经有很多免费的开源库了,如果不是有很特别的需求,大可不必新建一个轮子. 在这里我使用的这个第三方库名字叫做 SWRevealViewC ...
- jtag引脚
如果不能下载,可能原因也许是电量不足了... 在电力不足的时候,仿真也不能进行... ///////////////////////////////////////////////////////// ...
- UVA 10917 Walk Through the Forest SPFA
uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...
- UVA 11489 - Integer Game 博弈
看题传送门 题目大意: S和T在玩游戏,S先.给出一数字串,两人轮流取出一个数字,要求每次取完之后剩下的数为3的倍数,或者没有数字留下.如果两个人足够聪明,求胜利的一方. 思路: 我一开始竟然没有输C ...
- ITFriend月刊-第1期-2014年6月.pdf
ITFriend上线一个月了,积累了不少优质内容,本周进行了整理,制作了PDF格式的电子书. 欢迎大家下载阅读. 下载地址: CSDN下载:http://download.csdn.net/detai ...
- iOS数据存储简要笔记
1. 数据存储常用的方式 (1)XML 属性列表(plist)归档 (2)preference(偏好设置) (3)NSKeyedArchiver归档(NSCoding) (4) SQLite3 ...
- ng build --base-href的设定问题
项目构建部署中遇到的问题: 1.不使用hash,如何解决刷新页面404的问题? 说明: root 指定项目地址路径,默认为nginx下的html index 默认访问index文件 try_fil ...
- openGL线型和线宽以及线的抗锯齿
openGL线型和线宽以及线抗锯齿 一. 线宽 Opengl的线宽设置:glLineWidth(width); width为float类型值,在0~10.0,大于10以上按10来处理. 若开启线的反走 ...
- arcengine,深入理解游标Cursors,实现数据的快速查找,插入,删除,更新
风过无痕 原文 arcengine,深入理解游标Cursors,实现数据的快速查找,插入,删除,更新 深入理解游标Cursors,实现数据的快速查找,插入,删除,更新 1.查找数据Search Cu ...
- gdb常用调试命令以及多线程堆栈的查看
GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具.或许,各位比较喜欢那种图形界面方式的,像VC.BCB等IDE的调试,但如果你是在UNIX平台下做软件,你会发现GDB这个调试工具有比VC ...