回归(regression)的理解(regressor,回归子)
1. 基本概念
回归(regression)是监督学习(given {(xi,yi)})的一个重要分类。回归用于预测输入变量(自变量,Xi)与输出变量(因变量,Yi) 之间的关系,特定是当输入变量的值发生变化时,输出变量的值随之发生的变化。
回归模型正是表示从输入变量(xi∈Rn)到输出变量(y∈R,也就是一个一维的数值,如果输出也是多维呢?至少不是一个分类任务了)之间映射的函数。回归问题的学习等价于函数拟合,选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据。
- 学习 ⇒ 学习系统(learning phase)⇒ 对象(输入)是训练数据
- 预测 ⇒ 预测系统(predicate phase)⇒ 对象(输入)是测试数据
回归问题分为学习和预测两个过程。首先给定一个训练数据集:
学习系统基于训练数据构建一个模型,即函数 Y=f(X);对新的输入 xN+1,预测系统根据学习到的模型 Y=f(X),确定相应的输出(预测输出)yN+1。
- 回归问题按照输入变量的个数,分为一元回归和多元回归;
- 按照输入变量和输出变量之间关系(即模型的类型),分为线性模型和非线性模型;
二者一组合,就得出四种回归的分类了:一元线性,一元非线性,多元线性,多元非线性。
回归学习最常用到的损失函数是平方损失函数,在此问题下,回归问题可以由著名的最小二乘法(least squares)求解。
比如注明的线性回归问题:
2. regressor 等概念的认识
Linear Regression with One Regressor
考虑如下的线性方程,
- β0 是(直线的)截距;
- β1 是斜率;
该线性方程,是一个具有单回归子(regressor)的回归模型,
- Y 是因变量,
- X 是独立变量(自变量)或者叫回归子(regressor)
β0+β1Xi 表示着总体回归函数,
- β0,β1 是参数(parameters)或者系数(coefficients)
ui 则是误差项(error term)
3. exponential regression model
What does a “closed-form solution” mean?
考虑如下的简单指数型回归模型,其唯一的 regressor 就是截距:
目标函数为:
求和号展开,并对 α 求导,置 0,最终得,α⋆=lny¯
回归(regression)的理解(regressor,回归子)的更多相关文章
- 浅谈回归Regression(一)
一.什么是回归? 孩子的身高是否与父母有关? 实际上,父母和孩子的身高是受到回归效应影响的.在时间纵轴上受影响.具有随机性的事物,无不遵循这一规律. 只要数据足够大,人类的身高或者智商,都有趋于平均值 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- Keras(三)backend 兼容 Regressor 回归 Classifier 分类 原理及实例
backend 兼容 backend,即基于什么来做运算 Keras 可以基于两个Backend,一个是 Theano,一个是 Tensorflow 查看当前backend import keras ...
- 从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- 利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
随机推荐
- iOS_02_什么是ios开发
什么是ios开发? * 已知:ios是iphone,ipad等手持设备操作系统. * ios开发就是开发运行在ios系统上的应用或者游戏软件,比如手机QQ,微博或者游戏,说白了,就是开发手机软件:当然 ...
- 【重拾Effective Java】一
之前看这本<Effective Java(第二版)>都是非常早曾经了.这本书确实是本好书.须要细嚼慢咽,每次看都有不同的体验. 在此写博客巩固一下. 第一章.创建和销毁对象 考虑用静态工厂 ...
- 将App程序发布到苹果App Store
发布iOS应用程序到App Store - 前期工作 要发布iOS应用程序到App Store首先需要一个iOS developer帐号,账号是收费的,$99美元/年.即便是免费应用也需要一个开发者账 ...
- mysql的入门基础操作
1.数据库的简单介绍 1.1 什么是数据库,就是一个文件系统,使用标准sql对数据库进行操作 1.2 常见的数据库 oracle 是oracle公司的数据库,是一个收费的大型的数据库 DB2,是IB ...
- windows server 2012 AD 活动目录部署加入域并创建域用户(寻找视频课程)(计算机加入域其实是本计算机的管理员账号(本机名)加入域,关联账号即可在已经加入域的计算机上面登录)
windows server 2012 AD 活动目录部署加入域并创建域用户(寻找视频课程)(计算机加入域其实是本计算机的管理员账号(本机名)加入域,关联账号即可在已经加入域的计算机上面登录) 一.总 ...
- iconv简介(1、字符串|文件字符转换:iconv用于将一种已知的字符集文件转换成另一种已知的字符集文件)(2、编程语言函数功能的相似性:iconv不仅再php中有用,而且c语言中也有用,还有linux等)
iconv简介(1.字符串|文件字符转换:iconv用于将一种已知的字符集文件转换成另一种已知的字符集文件)(2.编程语言函数功能的相似性:iconv不仅再php中有用,而且c语言中也有用,还有lin ...
- mysql去除字段内容的空格和换行回车
MySQL 去除字段中的换行和回车符 解决方法: UPDATE tablename SET field = REPLACE(REPLACE(field, CHAR(10), ''), ...
- android的edittext设置输入限制,只能输入数字
EditText的属性里面已经封装好了相关的设置,上一篇文章里面也提到了,不熟悉的可以去查看上一篇EditText属性大全,这里着重讲输入限制的属性: android:digits="123 ...
- ios开发事件处理之 四:hittest方法的底层实现与应用
#import "XMGWindow.h" /** 1:注意点:hitTest方法内部会调用pointInside方法,询问触摸点是否在自己身上,当遍历子控件时,传入的坐标点要进行 ...
- CMakeListx.txt 编辑语法学习
已hello.cpp为源文件,构建一个CMakeLists.txt cmake_minimum_required(VERSION 2.8) project(hello) add_executable( ...