回归(regression)的理解(regressor,回归子)
1. 基本概念
回归(regression)是监督学习(given {(xi,yi)})的一个重要分类。回归用于预测输入变量(自变量,Xi)与输出变量(因变量,Yi) 之间的关系,特定是当输入变量的值发生变化时,输出变量的值随之发生的变化。
回归模型正是表示从输入变量(xi∈Rn)到输出变量(y∈R,也就是一个一维的数值,如果输出也是多维呢?至少不是一个分类任务了)之间映射的函数。回归问题的学习等价于函数拟合,选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据。
- 学习 ⇒ 学习系统(learning phase)⇒ 对象(输入)是训练数据
- 预测 ⇒ 预测系统(predicate phase)⇒ 对象(输入)是测试数据
回归问题分为学习和预测两个过程。首先给定一个训练数据集:
学习系统基于训练数据构建一个模型,即函数 Y=f(X);对新的输入 xN+1,预测系统根据学习到的模型 Y=f(X),确定相应的输出(预测输出)yN+1。
- 回归问题按照输入变量的个数,分为一元回归和多元回归;
- 按照输入变量和输出变量之间关系(即模型的类型),分为线性模型和非线性模型;
二者一组合,就得出四种回归的分类了:一元线性,一元非线性,多元线性,多元非线性。
回归学习最常用到的损失函数是平方损失函数,在此问题下,回归问题可以由著名的最小二乘法(least squares)求解。
比如注明的线性回归问题:
2. regressor 等概念的认识
Linear Regression with One Regressor
考虑如下的线性方程,
- β0 是(直线的)截距;
- β1 是斜率;
该线性方程,是一个具有单回归子(regressor)的回归模型,
- Y 是因变量,
- X 是独立变量(自变量)或者叫回归子(regressor)
β0+β1Xi 表示着总体回归函数,
- β0,β1 是参数(parameters)或者系数(coefficients)
ui 则是误差项(error term)
3. exponential regression model
What does a “closed-form solution” mean?
考虑如下的简单指数型回归模型,其唯一的 regressor 就是截距:
目标函数为:
求和号展开,并对 α 求导,置 0,最终得,α⋆=lny¯
回归(regression)的理解(regressor,回归子)的更多相关文章
- 浅谈回归Regression(一)
一.什么是回归? 孩子的身高是否与父母有关? 实际上,父母和孩子的身高是受到回归效应影响的.在时间纵轴上受影响.具有随机性的事物,无不遵循这一规律. 只要数据足够大,人类的身高或者智商,都有趋于平均值 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- Keras(三)backend 兼容 Regressor 回归 Classifier 分类 原理及实例
backend 兼容 backend,即基于什么来做运算 Keras 可以基于两个Backend,一个是 Theano,一个是 Tensorflow 查看当前backend import keras ...
- 从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- 利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
随机推荐
- 将App程序发布到苹果App Store
发布iOS应用程序到App Store - 前期工作 要发布iOS应用程序到App Store首先需要一个iOS developer帐号,账号是收费的,$99美元/年.即便是免费应用也需要一个开发者账 ...
- Java反射学习总结二(用反射调用对象的私有属性和方法)
大家都知道正常的调用是不可以访问对象的private修饰的属性和方法的,这也是Java的封装性原则. 但是有没有方法可以强制去访问对象的private修饰的属性和方法呢?那就是用反射!(这个可能在面试 ...
- 【u251】心灵的抚慰
Time Limit: 1 second Memory Limit: 128 MB [问题描述] 病毒问题解决后,神牛们的心灵久久不能平静.他可以从一个程序联想到一些相似的程序.比如从程序1联想到2, ...
- [RxJS] Conclusion: when to use Subjects
As a conclusion to this course about RxJS subjects, let's review when and why should you use them. F ...
- 线程堆栈大小 pthread_attr_setstacksize 的使用
pthread_create 创建线程时,若不指定分配堆栈大小,系统会分配默认值,查看默认值方法如下: # ulimit -s8192# 上述表示为8M:单位为KB. 也可以通过# ulimit -a ...
- thinkphp 3.2 updateFields 设置之后保存失败
// 检测提交字段的合法性 if(isset($this->options['field'])) { // $this->field('field1,field2...')->cre ...
- C++设计模式实现--备忘录(Memento)模式
一. 备忘录模式 定义:在不破坏封装性的前提下,捕获一个对象的内部状态.并在该对象之外保存这个状态. 这样以后就可将该对象恢复到原先保存的状态. 结构图: 使用范围: Memento 模式比較适用于功 ...
- PatentTips - Integrated circuit well bias circuitry
1. Field of the Invention This invention relates in general to an integrated circuit and more specif ...
- React Native 四:图片
一.展示图片资源 1.在ReactNative中.图片使用Image组件进行展示,以下我们就以静态.混合和网络资源等多种方式演示图片展示. 2.将图片放在代码目录img处:
- [Grid Layout] Describe a grid layout using grid-template-areas
We can describe the nature of a grid in an ‘ASCII-art’ way with grid-template-areas. Let’s see how t ...