回归(regression)的理解(regressor,回归子)
1. 基本概念
回归(regression)是监督学习(given {(xi,yi)})的一个重要分类。回归用于预测输入变量(自变量,Xi)与输出变量(因变量,Yi) 之间的关系,特定是当输入变量的值发生变化时,输出变量的值随之发生的变化。
回归模型正是表示从输入变量(xi∈Rn)到输出变量(y∈R,也就是一个一维的数值,如果输出也是多维呢?至少不是一个分类任务了)之间映射的函数。回归问题的学习等价于函数拟合,选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据。
- 学习 ⇒ 学习系统(learning phase)⇒ 对象(输入)是训练数据
- 预测 ⇒ 预测系统(predicate phase)⇒ 对象(输入)是测试数据
回归问题分为学习和预测两个过程。首先给定一个训练数据集:
学习系统基于训练数据构建一个模型,即函数 Y=f(X);对新的输入 xN+1,预测系统根据学习到的模型 Y=f(X),确定相应的输出(预测输出)yN+1。
- 回归问题按照输入变量的个数,分为一元回归和多元回归;
- 按照输入变量和输出变量之间关系(即模型的类型),分为线性模型和非线性模型;
二者一组合,就得出四种回归的分类了:一元线性,一元非线性,多元线性,多元非线性。
回归学习最常用到的损失函数是平方损失函数,在此问题下,回归问题可以由著名的最小二乘法(least squares)求解。
比如注明的线性回归问题:
2. regressor 等概念的认识
Linear Regression with One Regressor
考虑如下的线性方程,
- β0 是(直线的)截距;
- β1 是斜率;
该线性方程,是一个具有单回归子(regressor)的回归模型,
- Y 是因变量,
- X 是独立变量(自变量)或者叫回归子(regressor)
β0+β1Xi 表示着总体回归函数,
- β0,β1 是参数(parameters)或者系数(coefficients)
ui 则是误差项(error term)
3. exponential regression model
What does a “closed-form solution” mean?
考虑如下的简单指数型回归模型,其唯一的 regressor 就是截距:
目标函数为:
求和号展开,并对 α 求导,置 0,最终得,α⋆=lny¯
回归(regression)的理解(regressor,回归子)的更多相关文章
- 浅谈回归Regression(一)
一.什么是回归? 孩子的身高是否与父母有关? 实际上,父母和孩子的身高是受到回归效应影响的.在时间纵轴上受影响.具有随机性的事物,无不遵循这一规律. 只要数据足够大,人类的身高或者智商,都有趋于平均值 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- Keras(三)backend 兼容 Regressor 回归 Classifier 分类 原理及实例
backend 兼容 backend,即基于什么来做运算 Keras 可以基于两个Backend,一个是 Theano,一个是 Tensorflow 查看当前backend import keras ...
- 从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- 利用Caffe做回归(regression)
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
随机推荐
- vue使用改变element-ui主题色
每个项目的主题色一般都不一样,直接用element-ui的默认主题色似乎有点不合适,还需要自己一个一个的找元素class名然后在修改样式,非常麻烦,还容易影响到包含该类名的其他元素样式,所以需要自定义 ...
- windows ffmpeg 的安装
本文我们要安装的是 windows 下的 ffmpeg 命令行工具,安装的步骤十分简单,分为:下载.解压.配置环境变量. 下载,进入 http://ffmpeg.org/download.html#b ...
- 结合Wireshark捕获分组深入理解TCP/IP协议之以太网帧
摘要: 本文摘抄并整理了以太网相关理论知识,包括CSMA/CD协议机制及工作.LAN互连,详细分析了Ethernet II帧格式,最后给出Ethernet II帧实例. 一.以太网[1] 1. ...
- HASH算法具体解释
做了几年开发,一直不理解HASH算法的原理.今天偶从百度知道上看到一个牛人神一样的理解: 这个问题有点难度.不是非常好说清楚. 我来做一个比喻吧. 我们有非常多的小猪,每一个的体重都不一样,假设体重分 ...
- swift学习第十三天:类的构造函数
类的构造函数 构造函数的介绍 构造函数类似于OC中的初始化方法:init方法 默认情况下载创建一个类时,必然会调用一个构造函数 即便是没有编写任何构造函数,编译器也会提供一个默认的构造函数. 如果是继 ...
- 闪回drop恢复表后sql运行计划异常
-----正常运行计划 set autotrace traceonly set linesize 1000 select /*+index(t idx_object_id)*/ * from t wh ...
- windows go 安装
go的安装很简单,下载go的msi文件 这里提供go1.9的msi下载链接 https://www.lanzous.com/i2gb54d 直接全部next就行,默认安装在了c盘的go 然后配置环境变 ...
- ios开发Base64编码以及加密相关学习
一:.Base64补充 ```objc 1.Base64简单说明 描述:Base64可以成为密码学的基石,非常重要. 特点:可以将任意的二进制数据进行Base64编码 结果:所有的数据都能被编码为并只 ...
- Loader之二:CursorLoader基本实例 分类: H1_ANDROID 2013-11-16 10:50 5447人阅读 评论(0) 收藏
参考APIDEMO:sdk\samples\android-19\content\LoaderCursor 1.创建主布局文件,里面只包含一个Fragment. <FrameLayout xml ...
- Python 标准库和第三方库的安装位置、Python 第三方库安装的各种问题及解决
首先使用 sys 下的 path 变量查看所有的 python 路径: import sys sys.path 标准库 lib 目录下(home 目录/pythonXX.XX/lib) 第三方库 在 ...