题目大意:给定n个点m条边无向图,每次询问求当图中有编号为[L,R]的边时,整个图的联通块个数,强制在线

神题!(发现好久以前的题解没有写完诶)

我们要求图中联通块的个数,似乎不可搞啊。

联通块个数=n-树边条数!

考虑每条边的贡献,我们按编号从小到大暴力枚举每一条边。

考虑用$LCT$维护森林。

设新加入的这条边编号为$e$,连接了$x,y$两个点

如果$x,y$原来不连通,说明加入$e$会让图中多一条树边。边e对$L\in [1,e],R\geq e$的图$[L,R]$产生一点贡献

如果$x,y$原来就联通,说明加入$e$会产生环,并不会影响联通块个数。我们找出$e$所在环里编号最小的边$x$

当$L\leq x$时,删掉边$x$,图$[L,R]$的树边个数不变。

当$L>x$时,删掉边$x$,会让图$[L,R]$少一条树边。那么边$x$会对$L\in[x+1,e],R\geq e$的的图$[L,R]$产生一点贡献

如何处理询问?我们可以用主席树,主席树不同的根作为右端点,线段树维护对左端点的贡献。每次查询,主席树相减,然后单点查询

如何维护贡献?主席树上打差分实现区间修改

如何维护编号最小的边?把边转化成点扔到$LCT$里就行啦

 #include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 401000
#define M1 201000
#define S1 (N1<<1)
#define T1 (N1<<2)
#define ll long long
#define uint unsigned int
#define rint register int
#define ull unsigned long long
#define dd double
#define il inline
#define inf 1000000000
using namespace std; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n,m,T,type;
struct Edge{
int x[M1],y[M1],cte;
void ae(int u,int v)
{cte++;x[cte]=u,y[cte]=v;}
}E;
struct SEG{
int ls[N1*],rs[N1*],sum[N1*],root[N1],tot;
void pushup(int rt){sum[rt]=sum[ls[rt]]+sum[rs[rt]];}
void build(int l,int r,int &rt)
{
int mid=(l+r)>>; rt=++tot;
if(l==r) return;
build(l,mid,ls[rt]);
build(mid+,r,rs[rt]);
}
void update(int x,int l,int r,int r1,int &r2,int w)
{
if((!r2)||(r1==r2)){r2=++tot,sum[r2]=sum[r1],ls[r2]=ls[r1],rs[r2]=rs[r1];}
if(l==r) {sum[r2]+=w; return;} int mid=(l+r)>>;
if(x<=mid) update(x,l,mid,ls[r1],ls[r2],w);
else update(x,mid+,r,rs[r1],rs[r2],w);
pushup(r2);
}
int query(int L,int R,int l,int r,int rt)
{
if(!rt||L>R) return ;
if(L<=l&&r<=R) return sum[rt];
int mid=(l+r)>>,ans=;
if(L<=mid) ans+=query(L,R,l,mid,ls[rt]);
if(R>mid) ans+=query(L,R,mid+,r,rs[rt]);
return ans;
}
}s;
namespace lct{
int ch[N1][],fa[N1],mi[N1],id[N1],rev[N1],tot;
int idf(int x){return ch[fa[x]][]==x?:;}
int isroot(int x){return (ch[fa[x]][]==x||ch[fa[x]][]==x)?:;}
void pushup(int x){mi[x]=min(x,min(mi[ch[x][]],mi[ch[x][]]));}
void revers(int x){swap(ch[x][],ch[x][]),rev[x]^=;}
void pushdown(int x){if(rev[x]){revers(ch[x][]),revers(ch[x][]),rev[x]^=;}}
void rot(int x)
{
int y=fa[x],ff=fa[y],px=idf(x),py=idf(y);
if(!isroot(y)) ch[ff][py]=x; fa[x]=ff;
fa[ch[x][px^]]=y,ch[y][px]=ch[x][px^];
ch[x][px^]=y,fa[y]=x;
pushup(y),pushup(x);
}
int stk[N1],tp;
void splay(int x)
{
int y=x; stk[++tp]=x;
while(!isroot(y)){stk[++tp]=fa[y],y=fa[y];}
while(tp){pushdown(stk[tp--]);}
while(!isroot(x))
{
y=fa[x];
if(isroot(y)) rot(x);
else if(idf(y)==idf(x)) rot(y),rot(x);
else rot(x),rot(x);
}
}
void access(int x){for(int y=;x;y=x,x=fa[x]) splay(x),ch[x][]=y,pushup(x);}
void mkroot(int x){access(x),splay(x),revers(x);}
void split(int x,int y){mkroot(x),access(y),splay(y);}
int fdroot(int x){access(x),splay(x);while(ch[x][])pushdown(ch[x][]),x=ch[x][];return x;}
void cut(int x,int y){split(x,y);fa[x]=ch[y][]=,pushup(y);}
void link(int x,int y){split(x,y);fa[x]=y;}
//int isconn(int x,int y){split(x,y);if(!ch[x][1]&&fa[x]=y&&ch[y][0]==x) return 1;}
void solve(int x,int y,int e)
{
split(x+m,y+m);
if(x==y){
int r1=s.root[e-],r2=s.root[e]=++s.tot;
s.sum[r2]=s.sum[r1],s.ls[r2]=s.ls[r1],s.rs[r2]=s.rs[r1];
}else if(fdroot(y+m)!=x+m){
s.update(,,m,s.root[e-],s.root[e],);
if(e<m) s.update(e+,,m,s.root[e-],s.root[e],-);
}else{
int id=mi[y+m],xx=E.x[id],yy=E.y[id];
cut(id,xx+m); cut(id,yy+m);
s.update(id+,,m,s.root[e-],s.root[e],);
if(e<m) s.update(e+,,m,s.root[e-],s.root[e],-);
}
link(e,x+m),link(e,y+m);
}
};
int tot; int main()
{
int i,j,x,y,Q,sx,sy,ans=; tot=n+m;
scanf("%d%d%d%d",&n,&m,&Q,&type);
for(j=;j<=m;j++) x=gint(), y=gint(), E.ae(x,y);
s.build(,m,s.root[]);
for(lct::mi[]=inf,i=;i<=n+m;i++) lct::mi[i]=i;
for(j=;j<=m;j++)
{
x=E.x[j]; y=E.y[j];
lct::solve(x,y,j);
}
for(j=;j<=Q;j++)
{
x=gint(), y=gint();
if(type) x^=ans,y^=ans;
sx=s.query(,x,,m,s.root[x-]);
sy=s.query(,x,,m,s.root[y]);
ans=n-(sy-sx);
printf("%d\n",ans);
}
return ;
}

BZOJ 3514 GERALD07加强版 (LCT+主席树)的更多相关文章

  1. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  3. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  4. 【BZOJ3514】Codechef MARCH14 GERALD07加强版 LCT+主席树

    题解: 还是比较简单的 首先我们的思路是 确定起点 然后之后贪心的选择边(也就是越靠前越希望选) 我们发现我们只需要将起点从后向前枚举 然后用lct维护连通性 因为强制在线,所以用主席树记录状态就可以 ...

  5. BZOJ3514:GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  6. GERALD07加强版:lct,主席树,边化点

    Description:N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 传送门. lct这么神仙的东西一个题解都不写怎么行??? 神仙思路啊. 其实不是很难但是的确不容 ...

  7. bzoj 3514: GERALD07加强版 lct+可持久化线段树

    题目大意: N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解: 这道题考试的时候没想出来 于是便爆炸了 结果今天下午拿出昨天准备的题表准备做题的时候 题表里就有这题 ...

  8. BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT

    BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. I ...

  9. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

随机推荐

  1. multiple web application host under the same website on IIS (authentication mode)

    第一种方式,修改forms的name how to set the forms authentication cookie path assume you have already solved th ...

  2. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

  3. 把一个文件夹下的多个csv文件合并到一个excel的多个sheet

    #!/usr/bin/env python3 # -*- coding: UTF-8 -*- import pandas as pd import os import re if __name__ = ...

  4. Java中jspf文件的作用

    转自:https://blog.csdn.net/xzmeasy/article/details/75103431 为什么要用jspf文件 写jsp页面时,是不是:css和js引用特别多,而且有些页面 ...

  5. windows php文件下载地址

    http://windows.php.net/downloads/releases/archives/

  6. [Apple开发者帐户帮助]六、配置应用服务(1.1)Apple Pay:配置Apple Pay(iOS,watchOS)

    Apple Pay允许用户在您的应用中购买商品和服务.要将Apple Pay 权利添加到您的App ID,请先创建商家标识符,然后启用Apple Pay并创建付款处理证书. 或者,您可以使用Xcode ...

  7. selenium3 + python 操作浏览器基本方法

    from selenium import webdriverimport time as t # driver = webdriver.Chrome()# driver.get("http: ...

  8. 基于CGAL的Delaunay三角网应用

    目录 1. 背景 1.1 CGAL 1.2 cgal-bindings(Python包) 1.3 vtk-python 1.4 PyQt5 2. 功能设计 2.1 基本目标 2.2 待实现目标 3. ...

  9. [Luogu 2331] [SCOI2005]最大子矩阵

    [Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...

  10. 理解list和vector的区别

    原文:http://genwoxuevc.blog.51cto.com/1852984/503337 vector和数组类似,它拥有一段连续的内存空间,并且起始地址不变,因此它能非常好的支持随机存取( ...