题意

题解

做了这道题,发现扩欧快忘了。

根据题意可以很快地列出线性同余方程。

设跳了k次

x+mkΞy+nk(mod l)

(m-n)kΞ-(x-y)(mod l)

然后化一下

(m-n)k+(x-y)Ξ0(mod l)

也就是前面一坨是l的倍数

不妨设

(m-n)k+(x-y)=-tl

(m-n)k+tl=-(x-y)

我们要求的就是保证t<=0(因为我们设的-t倍的l,所以t<=0),k>=0时k的最小值

发现这是一个不定方程

根据裴蜀定理(这个定理搜狗输入法上没有)

当-(x-y)是gcd((m-n),t)的倍数时是有解的。(等式两边都乘-(x-y)/gcd就行了)且(m-n)k+tl=gcd((m-n),t)一定有整数解

所以我们用扩欧算出(m-n)k+tl=gcd((m-n),t)的一组特解和gcd

然后通过判断-(x-y)是不是gcd((m-n),t)的倍数判断有没有解。

假如有解我们就先保证(m-n)为正数根据k的通解公式k=-(x-y)/gcd*k0+h*l/gcd(h为整数)

然后求出最小的正数k就行了

然后这样做似乎没有保证t<=0

其实保证了

考虑通项公式。其实那个k0的系数-(x-y)/gcd

是因为我们要把(m-n)k+tl=gcd((m-n),t)化为-(x-y)/gcd(m-n)k+-(x-y)/gcdtl=-(x-y)给等式两边乘的

这样保证现在-(x-y)/gcd(m-n)k是大于等于-(x-y)的(当-(x-y)为正数)这样t<=0没什么问题。

当当-(x-y)为负数时我们发现-(x-y)/gcd(m-n)k小于等于-(x-y)此时t也变号了所以要求t>=0也没问题。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
long long x,y,n,m,l,xx,yy;
long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
x=;
return a;
}
long long c=exgcd(b,a%b,x,y);
long long z=x;
x=y;y=z-(a/b)*y;
return c;
}
int main(){
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
long long a=m-n;long long b=y-x;
if(a<){
a=-a;
b=-b;
}
long long gcd=exgcd(a,l,xx,yy);
if(b%gcd!=){
printf("Impossible");
}
else printf("%lld",(xx*(b/gcd)%(l/gcd)+(l/gcd))%(l/gcd));
return ;
}

luogu P1516 青蛙的约会(线性同余方程扩展欧几里德)的更多相关文章

  1. 解题报告:luogu P1516 青蛙的约会

    题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...

  2. POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)

    手动博客搬家: 本文发表于20180226 23:35:26, 原地址https://blog.csdn.net/suncongbo/article/details/79382991 题目链接: (p ...

  3. [Luogu P1516]青蛙的约会

    按照题意,显然可以列出同余方程,k即为所求天数,再将其化为不定方程 ,那么对这个方程用扩展欧几里德算法即可得出k,q的一组解,但是方程有解的充要条件是(m – n) 和L不同时为零并且x – y是m ...

  4. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  5. 青蛙的约会---poj1061(扩展欧几里德)

    题目链接:http://poj.org/problem?id=1061 就是找到满足 (X+mt)-(Y+nt) = Lk 的 t 和 k 即可 上式可化简为 (n-m)t + Lk = X-Y;满足 ...

  6. 洛谷 P1516 青蛙的约会 解题报告

    P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  7. 洛谷——P1516 青蛙的约会

    P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  8. P1516 青蛙的约会

    P1516 青蛙的约会x+mt-p1L=y+nt-p2L(m-n)t+L(p2-p1)=y-x令p=p2-p1(m-n)t+Lp=y-x然后套扩欧就完事了 #include<iostream&g ...

  9. P1516 青蛙的约会和P2421 [NOI2002]荒岛野人

    洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...

随机推荐

  1. day02 操作系统与编程语言

    目录 操作系统 操作系统是什么 操作系统做了什么 文件是什么? 为什么要有操作系统 操作系统有什么用 应用程序的启动和操作系统的启动 复盘QQ的启动 操作系统启动的流程 编程语言分类 机器语言 汇编语 ...

  2. html+css居中问题

    一.行级元素水平居中对齐(父元素设置 text-align:center) <div style="width: 200px; height: 100px;border: 1px so ...

  3. 《Exception》第八次团队作业:Alpha冲刺(第二天)

    一.项目基本介绍 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 Exception 作业学习目标 1.掌握软件测试基础技术.2.学习迭代式增量软 ...

  4. 利用Arcade表达式显示多行标签

    要素图层依然是全球气象站点分布数据,属性表如下: 展示效果如下,显示的四行数据分别是属性表中的WIND_NAME,TEMP,WIND(运算之后的),R_HUMIDITY 本次尝试一次性写全所有的信息: ...

  5. qt 摄像头程序

    http://www.oschina.net/code/snippet_124925_3789?p=3#comments http://www.codesoso.net/Search?q=qt+%C9 ...

  6. 原生JS中 callback,promise,generator,async-await 的简介

    callback,promise,generator,async-await 的简介 javascript异步的发展历程. ES6 以前: 回调函数(callback):nodejs express ...

  7. 微信小程序开发入门(一)

     小程序学习入门--(一) 最近自己学习微信小程序的过程当中自己总结出来的知识点,我会不断地更新和完善! 小程序的开发工具 一台电脑 熟悉HTML.CSS.JS基本语法 开发工具: 微信web开发者工 ...

  8. 【转】 C#获取当前程序运行路径的方法集合

    [转] C#获取当前程序运行路径的方法集合 //获取当前进程的完整路径,包含文件名(进程名). string str = this.GetType().Assembly.Location; resul ...

  9. csdn第五届在线编程大赛-全然平方

    题目详情 给定整数区间[A,B]问当中有多少个全然平方数. 输入格式: 多组数据,包括两个正整数A,B 1<=A<=B<=2000000000. 输出格式: 每组数据输出一行包括一个 ...

  10. spring mvc 插入一条数据 返回该数据的主键编号

    import org.springframework.jdbc.core.PreparedStatementCreator; import org.springframework.jdbc.suppo ...