[HAOI2015]树上染色

题目描述

有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

输入输出格式

输入格式:

第一行包含两个整数 N, K 。接下来 N-1 行每行三个正整数 fr, to, dis , 表示该树中存在一条长度为 dis 的边 (fr, to) 。输入保证所有点之间是联通的。

输出格式:

输出一个正整数,表示收益的最大值。

输入输出样例

输入样例#1: 复制

3 1

1 2 1

1 3 2

输出样例#1: 复制

3

说明

对于 100% 的数据, 0<=K<=N <=2000

题解

最开始我以为要处理出点与点之间的距离。

然后对于k的话实际上就是min(k,n-k)。

然后dp出最小价值的k个点对。

拿总路径和减去最小dp值。

但是发现不好维护。

于是抄看了题解

对于一个子树内我要选取的黑点。

我们这一次dp的不仅是增加的黑点的价值,还要处理出减少的白点的价值。

也就是说每选一个点,就要判断这条路径的贡献变化了多少。

对于每条路径的贡献。

为当前子树的黑节点×子树外的黑节点×边权+当前子树的白节点×子树外的白节点×边权就可以了。

这样就不用刻意去记录点对了。

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int N=2001;
struct node{
int to,nex;
ll v;
}e[N<<2];
int n,k,num,head[N],size[N];
ll f[N][N];
ll read(){
ll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} void add(int from,int to,int v){
num++;
e[num].to=to;
e[num].v=v;
e[num].nex=head[from];
head[from]=num;
} void dfs1(int x,int fa){
size[x]=1;
for(int i=head[x];i;i=e[i].nex){
int v=e[i].to;
if(v==fa)continue;
dfs1(v,x);size[x]+=size[v];
}
} void dfs2(int x,int fa){
f[x][0]=0;f[x][1]=0;
for(int i=head[x];i;i=e[i].nex){
int v=e[i].to;if(v!=fa){dfs2(v,x);
for(int j=min(size[x],k);j>=0;j--){
for(int l=0;l<=min(size[v],j);l++)
if(f[x][j-l]!=-1){
ll val=1ll*(l)*(k-l)*e[i].v+1ll*(size[v]-l)*(n-k+l-size[v])*e[i].v;
f[x][j]=max(f[x][j-l]+f[v][l]+val,f[x][j]);
}
}
}
}
} int main(){
n=read();k=read();
for(int i=1;i<n;i++){
int x=read(),y=read(),z=read();
add(x,y,z);add(y,x,z);
}
memset(f,-1,sizeof(f));
dfs1(1,1);dfs2(1,1);
printf("%lld\n",f[1][k]);
return 0;
}

[HAOI2015]树上染色(树形dp)的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  3. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. 【HAOI2015】树上染色—树形dp

    [HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...

  8. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

  9. 【HAOI2015】树上染色 - 树形 DP

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  10. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

随机推荐

  1. node——try-catch与异步操作

    //try-catch,用于捕获异常 //try-catch在node中只能捕获同步的异常,不能捕获异步异常 var fs=require('fs'); /*fs.writeFile('./abc.t ...

  2. [LUOGU]P3701 主席树(假的)

    有人恶意刷难度...就一个最大流模板... 但是题面吼啊2333 #include <iostream> #include <cstdio> #include <queu ...

  3. Redis windows版本的启停bat脚本命令

    Reids windows版本安装 redis windows官网推荐:https://github.com/MicrosoftArchive/redis/releases 下载解压即可. 启停bat ...

  4. [ReactVR] Add Lighting Using Light Components in React VR

    In order to illuminate a scene containing 3D objects a lighting setup is required. In this lesson we ...

  5. pcap网络抓包 无法import pcap

    坑爹的不知道从哪里看到说仅仅有pcap最多仅仅支持到python2.5,然后又是easy install又是安装pip就是无法成功import pcap... 我的python版本号是2.7.8. s ...

  6. start_kernel——boot_cpu_init及PER_CPU

    init/main.c /* * Activate the first processor. */ static void __init boot_cpu_init(void) { int cpu = ...

  7. Oracle SGA具体解释

    SGA(SYSTEM Global Area )系统全局区 l 数据快速缓存 在Oracle进行数据处理的过程中,代价最昂贵的就是物理 I/O操作了.相同的数据从内存中得到要比从磁盘上读取快的多. 因 ...

  8. Hibernate的延迟检索和立即检索

    一.立即检索 所谓立即检索就是立即装载和初始化检索方法指定的对象,即使Session关闭了,依然可以正常访问.立即检索策略的启用是通过在映射配置文件中将lazy实行值设置为false实现的. 通俗讲就 ...

  9. app-framework学习--nav的Scroller禁用与启用

    app-framewor(jqmobi) nav的Scroller禁用与启用 写在panel 的 data-load 方法里 禁用  $.ui.scrollingDivs.menu_scroller. ...

  10. ora-01157怎么解决

    在数据库startup时,出现以下两个错误:ora-01157:cannot identify/lock data file 8 -see DBWR trace fileora-01110:data ...