[HAOI2015]树上染色

题目描述

有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

输入输出格式

输入格式:

第一行包含两个整数 N, K 。接下来 N-1 行每行三个正整数 fr, to, dis , 表示该树中存在一条长度为 dis 的边 (fr, to) 。输入保证所有点之间是联通的。

输出格式:

输出一个正整数,表示收益的最大值。

输入输出样例

输入样例#1: 复制

3 1

1 2 1

1 3 2

输出样例#1: 复制

3

说明

对于 100% 的数据, 0<=K<=N <=2000

题解

最开始我以为要处理出点与点之间的距离。

然后对于k的话实际上就是min(k,n-k)。

然后dp出最小价值的k个点对。

拿总路径和减去最小dp值。

但是发现不好维护。

于是抄看了题解

对于一个子树内我要选取的黑点。

我们这一次dp的不仅是增加的黑点的价值,还要处理出减少的白点的价值。

也就是说每选一个点,就要判断这条路径的贡献变化了多少。

对于每条路径的贡献。

为当前子树的黑节点×子树外的黑节点×边权+当前子树的白节点×子树外的白节点×边权就可以了。

这样就不用刻意去记录点对了。

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int N=2001;
struct node{
int to,nex;
ll v;
}e[N<<2];
int n,k,num,head[N],size[N];
ll f[N][N];
ll read(){
ll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} void add(int from,int to,int v){
num++;
e[num].to=to;
e[num].v=v;
e[num].nex=head[from];
head[from]=num;
} void dfs1(int x,int fa){
size[x]=1;
for(int i=head[x];i;i=e[i].nex){
int v=e[i].to;
if(v==fa)continue;
dfs1(v,x);size[x]+=size[v];
}
} void dfs2(int x,int fa){
f[x][0]=0;f[x][1]=0;
for(int i=head[x];i;i=e[i].nex){
int v=e[i].to;if(v!=fa){dfs2(v,x);
for(int j=min(size[x],k);j>=0;j--){
for(int l=0;l<=min(size[v],j);l++)
if(f[x][j-l]!=-1){
ll val=1ll*(l)*(k-l)*e[i].v+1ll*(size[v]-l)*(n-k+l-size[v])*e[i].v;
f[x][j]=max(f[x][j-l]+f[v][l]+val,f[x][j]);
}
}
}
}
} int main(){
n=read();k=read();
for(int i=1;i<n;i++){
int x=read(),y=read(),z=read();
add(x,y,z);add(y,x,z);
}
memset(f,-1,sizeof(f));
dfs1(1,1);dfs2(1,1);
printf("%lld\n",f[1][k]);
return 0;
}

[HAOI2015]树上染色(树形dp)的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  3. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. 【HAOI2015】树上染色—树形dp

    [HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...

  8. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

  9. 【HAOI2015】树上染色 - 树形 DP

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  10. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

随机推荐

  1. [COCI2007]PRAVOKUTNI

    题目大意:在一个平面上,有\(N\)个点,求这些点构成的直角三角形个数.解题思路:枚举直角顶点,对于每个点,将这个点当做原点,对其他点按极角排序,然后双指针扫一遍,判断弧度差即可. C++ Code: ...

  2. [php]如何做到高并发优化

    在实际的开发过程中我们遇到过各种各样的活动,但像用户流量较大的平台就需要考虑高并发的问题,但是如何去解决呢?我总结了几种解决方案,欢迎大家指正! 一.什么是PV/UV/QPS? PV:页面访问量,即P ...

  3. Vue系列(二):发送Ajax、JSONP请求、Vue生命周期及实例属性和方法、自定义指令与过渡

    上一篇:Vue系列(一):简介.起步.常用指令.事件和属性.模板.过滤器 一. 发送AJAX请求 1. 简介 vue本身不支持发送AJAX请求,需要使用vue-resource.axios等插件实现 ...

  4. 【Python 学习】通过while循环和for循环猜测年龄

    Python中可以通过while和for循环来限制猜测年龄的次数 1. 在猜测年龄的小程序中,不加循环的代码是这样的: age_of_yu = 23 guess_age = int(input(&qu ...

  5. css所有属性(table,行列组)总结

    概述: CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明: CSS声明总是以分号(;)结束,声明组以大括号({})括起来: 一.注释: CSS注释以 "/*" 开始, ...

  6. Git学习总结(8)——Git和SVN之间的基本区别

    GIT不仅仅是个版本控制系统,它也是个内容管理系统(CMS),工作管理系统等.如果你是一个具有使用SVN背景的人,你需要做一定的思想转换,来适应GIT提供的一些概念和特征.所以,这篇文章的主要目的就是 ...

  7. [BZOJ1975]HH去散步 图论+矩阵

    ###[BZOJ1975]HH去散步 图论+矩阵 题目大意 要求出在一个m条边,n个点的图中,相邻两次走的边不能相同,求在t时间时从起点A走到终点B的路径方案总数.将答案mod45989 输入格式: ...

  8. CSS学习(五)

    导航栏 熟练使用导航栏,对于任何网站都非常重要. 使用CSS你可以转换成好看的导航栏而不是枯燥的HTML菜单. 导航栏=链接列表 作为标准的HTML基础一个导航栏是必须的.在我们的例子中我们将建立一个 ...

  9. ORA-01733: virtual column not allowed here

    基表: hr.tt  scott.tt  视图1: 基于 hr.tt  union all  scott.tt ---> scott.ttt  视图2: 基于 视图1->scott.ttt ...

  10. Oracle RAC集群体系结构

    一. Oracle集群体系结构 Oracle RAC,全称是Oracle Real Application Cluster,即真正的应用集群,是oracle提供的一个并行集群系统,整个集群系统由Ora ...