好吧,我承认就算当时再给我五个小时我也做不出来。

首先解释同色三角形问题:

给出n(n >= 3)个点,这些点中的一些被涂上了红色,剩下的被涂上了黑色。然后将这些点两两相连。于是每三个点都会组成一个三角形,

即总共同拥有sum = C(3,n)个三角形。

对于一个三角形,假设三个点颜色一样则称其为同色三角形。

那么一个非常直观的思路就是容斥,sum - 非同色三角形个数ans。

ans = (sigma (Xi*Yi) ) / 2;(1 <= i <= n,Xi,Yi分别表示与第 i 个点相连的红色点和黑色点的个数。

)

状态不好的时候,代码写的就像屎一样。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cmath>
#include <stack>
#include <map> #pragma comment(linker, "/STACK:1024000000")
#define EPS (1e-8)
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f using namespace std; int divi[100010][130]; bool is[100010]; int num[100010]; int mem[100010]; int ch[1001]; int Check(int x)
{
int ans = 0;
while(x)
ans += (x&1),x >>= 1;
return ans&1 ? 1:-1;
} int main()
{
int n = 100000,i,j,k; for(i = 0;i <= 1000; ++i)
ch[i] = Check(i); for(i = 1;i <= n; ++i)
divi[i][0] = 0; memset(is,false,sizeof(is)); for(i = 2;i <= n; ++i)
{
if(is[i] == false)
{
divi[i][++divi[i][0]] = i; for(j = i+i;j <= n; j += i)
{
divi[j][++divi[j][0]] = i;
is[j] = true;
}
}
} int Max,Mul,t;
int wf;
for(i = 1;i <= n; ++i)
{
Max = (1<<divi[i][0]) - 1;
wf = divi[i][0];
for(j = 1;j <= Max; ++j)
{
for(Mul = 1,t = 1,k = wf;k >= 1; --k,t <<= 1)
{
if((j&t) && j != t)
Mul *= divi[i][k];
}
if(Mul != 1)
divi[i][++divi[i][0]] = Mul*ch[j];
}
} int T,tmp;
LL ans,sum; int Top; scanf("%d",&T); while(T--)
{
scanf("%d",&n); memset(is,false,sizeof(is)); for(i = 1,Top = 0;i <= n; ++i)
{
scanf("%d",&num[i]);
is[num[i]] = true;
Top = max(Top,num[i]);
} ans = 0; memset(mem,-1,sizeof(mem));
LL anw = 0;
for(i = 1;i <= n; ++i)
{
tmp = num[i];
ans = 0;
for(j = divi[tmp][0];j >= 1; --j)
{
if(mem[abs(divi[tmp][j])] != -1)
sum = mem[abs(divi[tmp][j])]*(divi[tmp][j]/abs(divi[tmp][j]));
else
{
sum = 0;
for(k = abs(divi[tmp][j]);k <= Top; k += abs(divi[tmp][j]))
sum += is[k] ? 1 : 0;
mem[abs(divi[tmp][j])] = sum;
sum *= (divi[tmp][j]/abs(divi[tmp][j]));
}
ans += sum;
}
if(ans)
anw += (n-ans)*(ans-1);
}
LL tn = n;
printf("%I64d\n",tn*(tn-1)*(tn-2)/6 -anw/2);
} return 0;
}

HDU 5072 Coprime 同色三角形问题的更多相关文章

  1. hdu 5072 Coprime(同色三角形+容斥)

    pid=5072">http://acm.hdu.edu.cn/showproblem.php?pid=5072 单色三角形模型 现场赛和队友想了3个小时,最后发现想跑偏了.感觉好可惜 ...

  2. HDU 5072 Coprime (单色三角形+容斥原理)

    题目链接:Coprime pid=5072"> 题面: Coprime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: ...

  3. Hdu 5072 Coprime(容斥+同色三角形)

    原题链接 题意选出三个数,要求两两互质或是两两不互质.求有多少组这样的三个数. 分析 同色三角形n个点 每两个点连一条边(可以为红色或者黑色),求形成的三条边颜色相同的三角形的个数反面考虑这个问题,只 ...

  4. hdu 5072 Coprime

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出 n 个互不相同的数,求满足以下条件的三元无序组的个数:要么两两互质要么两两不互质. 思路:根据 ...

  5. hdu 5072 Coprime 容斥原理

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...

  6. hdu 5072 Coprime (容斥)

    Problem Description There are n people standing in a line. Each of them has a unique id number. Now ...

  7. ACM学习历程—HDU 5072 Coprime(容斥原理)

    Description There are n people standing in a line. Each of them has a unique id number. Now the Ragn ...

  8. hdu5072(鞍山regional problem C):容斥,同色三角形模型

    现场过的第四多的题..当时没什么想法,回来学了下容斥,又听学长讲了一讲,终于把它过了 题目大意:给定n个数,求全部互质或者全部不互质的三元组的个数 先说一下同色三角形模型 n个点 每两个点连一条边(可 ...

  9. [容斥原理] hdu 4135 Co-prime

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4135 Co-prime Time Limit: 2000/1000 MS (Java/Others) ...

随机推荐

  1. BZOJ1576: [Usaco2009 Jan]安全路经Travel(树链剖分)

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  2. 【AIM Tech Round 4 (Div. 2) B】Rectangles

    [链接]http://codeforces.com/contest/844/problem/B [题意] 也是道计数水题,没什么记录意义 [题解] 枚举每个点的位置在,然后往右往下 枚举和它一样颜色的 ...

  3. ASP.Net MVC Filter验证用户登录

    一.Filter是什么 ASP.NetMVC模式自带的过滤器Filter,是一种声明式编程方式,支持四种过滤器类型,各自是:Authorization(授权),Action(行为),Result(结果 ...

  4. 108.sqllite3(C语言数据库库)详解

    //创建数据库,插入表,生效 //创建数据库,插入表,生效 void create_database() { //数据库指针 sqlite3 *db=; //打开数据数据库,初始化指针 int res ...

  5. 前端面试题(计算机网络/http/https)

    (前端面试题大全,持续更新) 输入url的一系列过程 http缓存(缓存生效的情况),拓展下 get与post的异同,POST一般可以发送什么类型的文件 jsonp有什么不好的地方 http请求头(h ...

  6. 理解String的compareTo()方法返回值

    compareTo()的返回值是整型,它是先比较对应字符的大小(ASCII码顺序), 如果第一个字符和参数的第一个字符不等,结束比较,返回他们之间的差值. 如果第一个字符和参数的第一个字符相等,则以第 ...

  7. COGS——C2274. [HEOI 2016] tree

    http://www.cogs.pro/cogs/problem/problem.php?pid=2274 ★☆   输入文件:heoi2016_tree.in   输出文件:heoi2016_tre ...

  8. regexp模式匹配+location页面跳转+cookie/localstorage本地存储

    学习js的过程中,根据知识点编写一些code进行测试,以便检验. 这段程序使用了以下知识点: 1.regexp,对数据进行模式匹配 2.使用location对象进行页面跳转. 3.cookie/loc ...

  9. .netcore下的微服务、容器、运维、自动化发布

    原文:.netcore下的微服务.容器.运维.自动化发布 微服务 1.1     基本概念 1.1.1       什么是微服务? 微服务架构是SOA思想某一种具体实现.是一种将单应用程序作为一套小型 ...

  10. swift 利用 Reflect(字典转模型)

    1.  导入Reflect(字典转模型)框架 2. 让它继承Reflect这个类,如下代码所示: class IWUser: Reflect { /** *  用户的ID */ var idstr:N ...