【转】排列组合 "n个球放入m个盒子m"问题 总结
出处:https://blog.csdn.net/qwb492859377/article/details/50654627
球,盒子都可以分成是否不能区分,和能区分,还能分成是否能有空箱子,所以一共是8种情况,我们现在来一一讨论。
1.球同,盒不同,无空箱
C(n-1,m-1), n>=m
0, n<m
使用插板法:n个球中间有n-1个间隙,现在要分成m个盒子,而且不能有空箱子,所以只要在n-1个间隙选出m-1个间隙即可
2.球同,盒不同,允许空箱
C(n+m-1,m-1)
我们在第1类情况下继续讨论,我们可以先假设m个盒子里都放好了1个球,所以说白了就是,现在有m+n个相同的球,要放入m个不同的箱子,没有空箱。也就是第1种情况
3.球不同,盒相同,无空箱
第二类斯特林数dp[n][m]
dp[n][m]=m*dp[n-1][m]+dp[n-1][m-1],1<=m<n
dp[k][k]=1,k>=0
dp[k][0]=0,k>=1
0,n<m
这种情况就是第二类斯特林数,我们来理解一下这个转移方程。
对于第n个球,如果前面的n-1个球已经放在了m个箱子里,那么现在第n个球放在哪个箱子都是可以的,所以m*dp[n-1][m];
如果前n-1个球已经放在了m-1个箱子里,那么现在第n个球必须要新开一个箱子来存放,所以dp[n-1][m-1]
其他的都没法转移过来
4.球不同,盒相同,允许空箱
sigma dp[n][i],0<=i<=m,dp[n][m]为情况3的第二类斯特林数
这种情况就是在第3种情况的前提下,去枚举使用的箱子的个数
5.球不同,盒不同,无空箱
dp[n][m]*fact[m],dp[n][m]为情况3的第二类斯特林数,fact[m]为m的阶乘
因为球是不同的,所以dp[n][m]得到的盒子相同的情况,只要再给盒子定义顺序,就等于现在的答案了
6.球不同,盒不同,允许空箱
power(m,n) 表示m的n次方
每个球都有m种选择,所以就等于m^n
7.球同,盒同,允许空箱
dp[n][m]=dp[n][m-1]+dp[n-m][m], n>=m
dp[n][m]=dp[n][m-1], n<m
边界dp[k][1]=1,dp[1][k]=1,dp[0][k]=1
现在有n个球,和m个箱子,我可以选择在所有箱子里面都放上1个球,也可以不选择这个操作。
如果选择了这个操作,那么就从dp[n-m][m]转移过来
如果没有选择这个操作,那么就从dp[n][m-1]转移过来
8.球同,盒同,无空箱
dp[n-m][m],dp同第7种情况,n>=m
0, n<m
因为要求无空箱,我们先在每个箱子里面放1个球,然后还剩下n-m个球了,再根据情况7答案就出来了
【转】排列组合 "n个球放入m个盒子m"问题 总结的更多相关文章
- 排列组合 "n个球放入m个盒子m"问题 总结
求,盒子都可以分成是否不能区分,和能区分,还能分成是否能有空箱子,所以一共是8种情况,我们现在来一一讨论. 1.球同,盒不同,无空箱 C(n-1,m-1), n>=m0, n<m 使用插板 ...
- Luogu1287 | 盒子与球 (排列组合)
贴一个和其他题解不一样的做法 QWQ 题意:让我们求出 N 个球放入 R 个盒子且每个盒子都必须放球方案数. 首先,对于每一个球,可以将其放入的盒子数量共有 R 个,所以我们可以知道如果无需满足每个盒 ...
- 输入三个double型的数据,放入到a,b,c三个变量中去,使用条件结构与交换逻辑将这三个变量中的值从小到大排列。
import java.util.Scanner; public class C8{ public static void main(String []args){ /* 8.输入三个double型的 ...
- [leetcode] 题型整理之排列组合
一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...
- 将m个苹果放入n个盘子的问题【转】
来自:http://blog.csdn.net/qq675927952/article/details/6312255 问题1: m----->相同, n---> 相同,可为空 将m个苹果 ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合
C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- r个有标志的球放进n个不同的盒子里,要求无一空盒,问有多少种不同的分配方案?
由题意可知道r>=n,我原来想的是先取n个全排列,剩下的r-n个每个有n中选择,所以结果是n!*n^(r-n).经满神猜测,这样是会重复的.比如说,1到5个球,ABC三个盒子,ms ...
- 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]
都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...
随机推荐
- Vim操作的四种模式
Vim的四种模式一.启动Vim1.双击桌面的图标,就可以启动Vim(是图形界面的)2.在开始菜单---点--运行 接着输入 vim 或者gvim,就可以启动Vim或Gvim了.二.Vim的模式1.Vi ...
- HDU——T 1556 Color the ball
http://acm.hdu.edu.cn/showproblem.php?pid=1556 Time Limit: 9000/3000 MS (Java/Others) Memory Limi ...
- ubuntu下vim中内容拷贝到浏览器
在vim中编辑好了代码想要复制出来到浏览器或者其它地方.用yy复制后去别的地方粘帖发现根本不是当初复制的内容,非常头疼-- 这是由于vim中有它自己的一套剪贴板系统(clipboard).这套系统和u ...
- 排序(1)---------选择排序(C语言实现)
选择排序的基本思想: 选择排序(Selection sort)是一种简单直观的排序算法. 它的工作原理例如以下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素 ...
- DB2物化视图(Materialized Query Tables, MQT)
DB2的物化视图MQT是基于查询结果定义的一个表,MQT中包括的数据来自MQT定义所基于的一个或多个表, 使用MQT能够显著提高查询的操作性能. 数据库的视图和MQT都是基于一个查询来定义的.每当视图 ...
- Array与ArrayList
代码图理解复杂代码 类图 1.抽象动物类Animal using System; using System.Collections.Generic; using System.Linq; using ...
- js实现删除确认提示框
js实现删除确认提示框 一.实例描述 防止用户小心单击了“删除”按钮,在用户单击“删除”按钮后,给出一个提示,让用户确认此次操作是否正确. 二.效果 三.代码 <!DOCTYPE html> ...
- Ubuntu 12.04使用演示
今年年初,发布了Ubuntu 12.04(代号Precise Pangolin),但正式版预计将于2012年的4月底发布,作者对最新版本的ubuntu做了试用,先将操作视频与大家分享.更多内容请关注本 ...
- 图片工具GraphicsMagick的安装配置与基本使用
本文使用GraphicsMagick的版本为1.3.18 (Released March 9, 2013). 1.简介 GraphicsMagick是一个短小精悍的的图片处理工具和库集合.对于Java ...
- POJ——T 3461 Oulipo
http://poj.org/problem?id=3461 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 42698 ...