重点是如何找到可以配对的\(a[i]\)和\(a[j]\)。

把\(a[i]\)分解质因数。设\(a[i]\)分解出的质因数的数量为\(cnt[i]\)。

设\(a[i]\geq a[j]\)

那么\(a[i]\)可以和\(a[j]\)配对需要满足\(a[i]\)%\(a[j]==0\)&&\(cnt[i]==cnt[j]+1\)

证明显然。

然后我们按\(cnt[i]\)的奇偶分成两部分,然后如果\(a[i]\)和\(a[j]\)可以配对(假设a[i]在左边)从\(i\)向\(j\)连一条费用为\(c[i]*c[j\)],流量为\(INF\)的边。

然后\(S\)向左部点连费用为\(0\),流量为\(b[i]\)的边。

然后每一个右部点向\(T\)连费用为\(0\),流量为\(b[i]\)的边。

跑费用流。

因为费用流优先走最长路。

所以我们可以贪心。

当总费用刚好为负时结束就好了。

具体来说这次增广前的总费用为\(tot\),总流量为\(w\)。

然后这次最长路长度为\(x\),可以增广的流量为\(tmp\)。

且\(tot+x*tmp<0\),答案就是\(w+\lfloor \frac{tot}{x} \rfloor\)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define int long long
const int N=233;
const int INF=1e14;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int book[101000],prime[100100],tot;
void pre_work(int n){
for(int i=2;i<=n;i++){
if(book[i]==0)prime[++tot]=i;
for(int j=1;j<=tot&&prime[j]*i<=n;j++){
book[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
}
int work(int x){
int tmp=0;
for(int i=1;prime[i]*prime[i]<=x;i++)
if(x%prime[i]==0){
while(x%prime[i]==0)x/=prime[i],tmp++;
}
if(x>1)tmp++;
return tmp;
}
struct edge{
int to,nxt,flow,cost;
}e[N*N*2];
int cnt=1,head[N];
void add_edge(int u,int v,int flow,int cost){
cnt++;
e[cnt].nxt=head[u];
e[cnt].to=v;
e[cnt].flow=flow;
e[cnt].cost=cost;
head[u]=cnt;
cnt++;
e[cnt].nxt=head[v];
e[cnt].to=u;
e[cnt].flow=0;
e[cnt].cost=-cost;
head[v]=cnt;
}
int dis[N],vis[N],road[N],S,T,tmp,ans;
bool spfa(){
for(int i=S;i<=T;i++)dis[i]=INF;
queue<int> q;
q.push(S);
dis[S]=0;
vis[S]=1;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(e[i].flow&&dis[v]>dis[u]+e[i].cost){
dis[v]=dis[u]+e[i].cost;
road[v]=i;
if(vis[v]==0){
vis[v]=1;
q.push(v);
}
}
}
}
if(dis[T]==INF)return false;
int mn=INF;
for(int i=T;i!=S;i=e[road[i]^1].to)
mn=min(e[road[i]].flow,mn);
if(tmp+mn*dis[T]>0){
ans+=-tmp/dis[T];
return false;
}
tmp+=mn*dis[T];
ans+=mn;
for(int i=T;i!=S;i=e[road[i]^1].to){
e[road[i]].flow-=mn;
e[road[i]^1].flow+=mn;
}
return true;
}
int n,a[N],b[N],c[N],w[N];
signed main(){
pre_work(100000);
n=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<=n;i++)b[i]=read();
for(int i=1;i<=n;i++)c[i]=read();
for(int i=1;i<=n;i++)w[i]=work(a[i]);
S=0;T=n+1;
for(int i=1;i<=n;i++)
if(w[i]%2==1)add_edge(S,i,b[i],0);
else add_edge(i,T,b[i],0);
for(int i=1;i<=n;i++){
if(w[i]%2==0)continue;
for(int j=1;j<=n;j++){
if(w[j]%2==1)continue;
if((a[j]%a[i]==0&&w[j]==w[i]+1)||(a[i]%a[j]==0&&w[i]==w[j]+1))
add_edge(i,j,INF,-c[i]*c[j]);
}
}
while(spfa());
printf("%lld",ans);
return 0;
}

[SDOI2016]数字配对(费用流+贪心+trick)的更多相关文章

  1. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  2. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  3. BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)

    BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...

  4. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  5. 4514: [Sdoi2016]数字配对 费用流

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b- ...

  6. 【BZOJ 4514】[Sdoi2016]数字配对 费用流

    利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...

  7. 【BZOJ4514】【SDOI2016】数字配对 [费用流]

    数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...

  8. [bzoj4514]数字配对[费用流]

    今年SDOI的题,看到他们在做,看到过了一百多个人,然后就被虐惨啦... 果然考试的时候还是打不了高端算法,调了...几天 默默地yy了一个费用流构图: 源连所有点,配对的点连啊,所有点连汇... 后 ...

  9. [SDOI2016][bzoj4514] 数字配对 [费用流]

    题面 传送门 思路 一个数字能且只能匹配一次 这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组) 上限?价值?网络流! 把一次匹配设为一点流量,那产生 ...

随机推荐

  1. 【ACM】hdu_1094_A+BVI_201307261731

    A+B for Input-Output Practice (VI)Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3276 ...

  2. 楼控-西门子insight BBMD设置

    BBMD设置的目的就是让两个不同网段的设备可以同时在一个系统中访问的操作. 比如你有两个bacnet的网络,但是一个是192.168.0.1-192.168.0.255的网段,另一个是10.0.0.1 ...

  3. [bzoj3307]雨天的尾巴_线段树合并

    雨天的尾巴 bzoj-3307 题目大意:N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. ...

  4. 洛谷——P1910 L国的战斗之间谍

    https://www.luogu.org/problem/show?pid=1910#sub 题目背景 L国即将与I国发动战争!! 题目描述 俗话说的好:“知己知彼,百战不殆”.L国的指挥官想派出间 ...

  5. eclipse重置页面恢复到最初布局状态

    eclipse重置页面恢复到最初布局状态 window->perspective->reset perspective

  6. Linux 定时任务的学习

    名称 : crontab 使用权限 : 所有使用者 使用方式 : crontab file [-u user]-用指定的文件替代目前的crontab. crontab-[-u user]-用标准输入替 ...

  7. udev详解【转】

    本文转载自:http://blog.csdn.net/skyflying2012/article/details/9359185 如果你使用Linux比较长时间了,那你就知道,在对待设备文件这块,Li ...

  8. ES 断路器——本质上保护OOM提前抛出异常而已

    监控fielddata使用了多少内存以及是否有数据被驱逐是非常重要的.大量的数据被驱逐会导致严重的资源问题以及不好的性能. Fielddata使用可以通过下面的方式来监控: 对于单个索引使用 {ref ...

  9. H3C路由器查看序列号信息

    H3C MSR系列的路由器,查看本机的MAC地址.序列号信息和生产日期信息等可以使用dis device manuinfo 命令查看,以下是执行结果: slot 0 DEVICE_NAME       ...

  10. Linux Shell Scripting Cookbook 读书笔记 2

    cat,script,find, xargs, tr, tmp文件,字符串截取,批量文件重命名,固定大小文件,自动化交互 1. cat的用法 压缩连续的空白行 cat -s file 也可以用tr,将 ...