重点是如何找到可以配对的\(a[i]\)和\(a[j]\)。

把\(a[i]\)分解质因数。设\(a[i]\)分解出的质因数的数量为\(cnt[i]\)。

设\(a[i]\geq a[j]\)

那么\(a[i]\)可以和\(a[j]\)配对需要满足\(a[i]\)%\(a[j]==0\)&&\(cnt[i]==cnt[j]+1\)

证明显然。

然后我们按\(cnt[i]\)的奇偶分成两部分,然后如果\(a[i]\)和\(a[j]\)可以配对(假设a[i]在左边)从\(i\)向\(j\)连一条费用为\(c[i]*c[j\)],流量为\(INF\)的边。

然后\(S\)向左部点连费用为\(0\),流量为\(b[i]\)的边。

然后每一个右部点向\(T\)连费用为\(0\),流量为\(b[i]\)的边。

跑费用流。

因为费用流优先走最长路。

所以我们可以贪心。

当总费用刚好为负时结束就好了。

具体来说这次增广前的总费用为\(tot\),总流量为\(w\)。

然后这次最长路长度为\(x\),可以增广的流量为\(tmp\)。

且\(tot+x*tmp<0\),答案就是\(w+\lfloor \frac{tot}{x} \rfloor\)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define int long long
const int N=233;
const int INF=1e14;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int book[101000],prime[100100],tot;
void pre_work(int n){
for(int i=2;i<=n;i++){
if(book[i]==0)prime[++tot]=i;
for(int j=1;j<=tot&&prime[j]*i<=n;j++){
book[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
}
int work(int x){
int tmp=0;
for(int i=1;prime[i]*prime[i]<=x;i++)
if(x%prime[i]==0){
while(x%prime[i]==0)x/=prime[i],tmp++;
}
if(x>1)tmp++;
return tmp;
}
struct edge{
int to,nxt,flow,cost;
}e[N*N*2];
int cnt=1,head[N];
void add_edge(int u,int v,int flow,int cost){
cnt++;
e[cnt].nxt=head[u];
e[cnt].to=v;
e[cnt].flow=flow;
e[cnt].cost=cost;
head[u]=cnt;
cnt++;
e[cnt].nxt=head[v];
e[cnt].to=u;
e[cnt].flow=0;
e[cnt].cost=-cost;
head[v]=cnt;
}
int dis[N],vis[N],road[N],S,T,tmp,ans;
bool spfa(){
for(int i=S;i<=T;i++)dis[i]=INF;
queue<int> q;
q.push(S);
dis[S]=0;
vis[S]=1;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(e[i].flow&&dis[v]>dis[u]+e[i].cost){
dis[v]=dis[u]+e[i].cost;
road[v]=i;
if(vis[v]==0){
vis[v]=1;
q.push(v);
}
}
}
}
if(dis[T]==INF)return false;
int mn=INF;
for(int i=T;i!=S;i=e[road[i]^1].to)
mn=min(e[road[i]].flow,mn);
if(tmp+mn*dis[T]>0){
ans+=-tmp/dis[T];
return false;
}
tmp+=mn*dis[T];
ans+=mn;
for(int i=T;i!=S;i=e[road[i]^1].to){
e[road[i]].flow-=mn;
e[road[i]^1].flow+=mn;
}
return true;
}
int n,a[N],b[N],c[N],w[N];
signed main(){
pre_work(100000);
n=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<=n;i++)b[i]=read();
for(int i=1;i<=n;i++)c[i]=read();
for(int i=1;i<=n;i++)w[i]=work(a[i]);
S=0;T=n+1;
for(int i=1;i<=n;i++)
if(w[i]%2==1)add_edge(S,i,b[i],0);
else add_edge(i,T,b[i],0);
for(int i=1;i<=n;i++){
if(w[i]%2==0)continue;
for(int j=1;j<=n;j++){
if(w[j]%2==1)continue;
if((a[j]%a[i]==0&&w[j]==w[i]+1)||(a[i]%a[j]==0&&w[i]==w[j]+1))
add_edge(i,j,INF,-c[i]*c[j]);
}
}
while(spfa());
printf("%lld",ans);
return 0;
}

[SDOI2016]数字配对(费用流+贪心+trick)的更多相关文章

  1. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  2. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  3. BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)

    BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...

  4. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  5. 4514: [Sdoi2016]数字配对 费用流

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b- ...

  6. 【BZOJ 4514】[Sdoi2016]数字配对 费用流

    利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...

  7. 【BZOJ4514】【SDOI2016】数字配对 [费用流]

    数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...

  8. [bzoj4514]数字配对[费用流]

    今年SDOI的题,看到他们在做,看到过了一百多个人,然后就被虐惨啦... 果然考试的时候还是打不了高端算法,调了...几天 默默地yy了一个费用流构图: 源连所有点,配对的点连啊,所有点连汇... 后 ...

  9. [SDOI2016][bzoj4514] 数字配对 [费用流]

    题面 传送门 思路 一个数字能且只能匹配一次 这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组) 上限?价值?网络流! 把一次匹配设为一点流量,那产生 ...

随机推荐

  1. Spring Boot 定时任务单线程和多线程

    Spring Boot 的定时任务: 第一种:把参数配置到.properties文件中: 代码: package com.accord.task; import java.text.SimpleDat ...

  2. 07springMVC视图解析器

    u  概述 u  常见视图解析器 u  UrlBasedViewResolver u  InternalResourceViewResolver u  视图解析器链 u  说明 1      概述 在 ...

  3. [bzoj2131]免费的馅饼_树状数组

    免费的馅饼 bzoj-2131 题目大意: 注释:$1\le n \le 10^5$,$1\le w \le 10^8$. 想法:首先,想到dp 状态:dp[i][j]表示i分钟在位置j的最大收益 优 ...

  4. Extensions for Spatial Data

    http://dev.mysql.com/worklog/task/?spm=5176.100239.blogcont4270.8.j3asa7&id=6609 前文: 这两天因为项目原因看了 ...

  5. 【软件project】之第五、六章总结

    软件project的前几章各自是软件计划.需求分析.软件设计.整体的都规划好了以后,就该着手去实践了. 所谓的理论体系足够强大了以后,实践就显得尤为轻松.我们设计软件,实践当然就是用我已经计划好的语言 ...

  6. ZOJ2724_Windows Message Queue(STL/优先队列)

    解题报告 题意: 看输入输出就非常明确. 思路: 优先队列. #include <algorithm> #include <iostream> #include <cst ...

  7. sublime中BracketHighlighter 插件使用 (转)

    sublime中BracketHighlighter 插件使用 1.打开package Control,选择install Package 2.输入BracketHighlighter,回车 3.这样 ...

  8. c语言递归讲解分析

    C语言允许函数调用它自己,这种调用的过程称为"递归(recursion)" 举例说明,如下代码: #include <stdio.h> void up_and_down ...

  9. Linux Shell Scripting Cookbook 读书笔记 5

    sed,awk 1. sed (string editor) 使用-i可以将结果运用于原文件 sed 's/text1/text2/' file > newfile mv newfile fil ...

  10. linux 免密登陆(超简单)

    一.客户端生产公钥 在windwos上 生成公钥私钥前,先下载git哦 ssh-keygen -t rsa# 记住下方方框内公钥保存地址, 二.查看自己用户的登录地址 cat /etc/passwd ...