洛谷 P3199 [HNOI2009]最小圈
题目背景
如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献。
题目描述
对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除以k,现要求其中的最小值
输入输出格式
输入格式:
第一行2个正整数,分别为n和m
以下m行,每行3个数,表示边连接的信息,
输出格式:
一行一个数,表示最小圈的值,保留8位小数。
输入输出样例
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
3.66666667
说明
若设边权为vv,那么n\le 3000,m\le 10000,v\le 50000n≤3000,m≤10000,v≤50000
思路:分数规划
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 10010
using namespace std;
int n,m,tot;
double l,r,mid,ans;
int vis[MAXN];
double dis[MAXN],cap[MAXN];
int to[MAXN],net[MAXN],head[MAXN];
void add(int u,int v,double w){
to[++tot]=v;cap[tot]=w;net[tot]=head[u];head[u]=tot;
}
bool spfa(int now){
vis[now]=;
for(int i=head[now];i;i=net[i])
if(dis[to[i]]>dis[now]-mid+cap[i]){
dis[to[i]]=dis[now]-mid+cap[i];
if(vis[to[i]]||spfa(to[i])){
vis[to[i]]=;
return true;
}
}
vis[now]=;
return false;
}
bool chack(){
memset(vis,,sizeof(vis));
memset(dis,,sizeof(dis));
for(int i=;i<=n;i++)
if(spfa(i)) return false;
return true;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int a,b;
double c;
scanf("%d%d%lf",&a,&b,&c);
add(a,b,c);
}
l=;r=;
while(r-l>0.000000001){
mid=(l+r)/;
if(chack()){
ans=mid;
l=mid;
}
else r=mid;
}
printf("%.8lf",ans);
}
/*
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
*/
洛谷 P3199 [HNOI2009]最小圈的更多相关文章
- 洛谷P3199 [HNOI2009]最小圈(01分数规划)
题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...
- P3199 [HNOI2009]最小圈 01分数规划
裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...
- P3199 [HNOI2009]最小圈
传送门 据rqy说有这么一个结论\[ans=\min_{v \in V,F_n(v)\neq \infty} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v) ...
- bzoj 1486: [HNOI2009]最小圈 dfs求负环
1486: [HNOI2009]最小圈 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1022 Solved: 487[Submit][Status] ...
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
- BZOJ_1486_[HNOI2009]最小圈_01分数规划
BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...
- [HNOI2009]最小圈 (二分答案+负环)
题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
随机推荐
- spline interpolation and draw image by matplotlib
1 # spline interpolation and draw image by matplotlib from scipy import interpolate import matplotli ...
- [转]C++ 获取文件夹下的所有文件名
转自http://www.cnblogs.com/fnlingnzb-learner/p/6424563.html 头文件:#include<io.h> char * filePath = ...
- How Javascript works (Javascript工作原理) (十) 使用 MutationObserver 监测 DOM 变化
个人总结: 这篇文章介绍了几种监测DOM变化的方法,重点介绍的是一个新浏览器API叫做MutationObserver. 注意:不要和Vue.js种 Object.defineProperty() 的 ...
- (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤
(开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...
- 一:1.2【print&input与变量和运算符】
[路径] 绝对路径:从根目录开始链接的路径 --->cd C:\Windows\Boot\DVD\EFI\en-US 相对路径:不从根目录开始链接的路径 ----> cd Boot\DV ...
- 紫书 习题 8-20 UVa 1620 (找规律+求逆序对)
这道题看了半天没看出什么规律, 然后看到别人的博客, 结论是当n为奇数且逆序数为奇数的时候 无解, 否则有解.但是没有给出证明, 在网上也找到详细的证明--我也不知道是为什么-- 求逆序对有两种方法, ...
- C++ Primer笔记13_运算符重载_总结
总结: 1.不能重载的运算符: . 和 .* 和 ?: 和 :: 和 sizeof 和 typeid 2.重载运算符有两种基本选择: 类的成员函数或者友元函数, 建议规则例如以下: 运算符 建议使用 ...
- Cubieboard学习资源
1.Cubieboard2学习系列学习教程. 2.Cubieboard安装server成功,ssh远程登录. 3.CubieBoard2 A20学习笔记. 4.一个学习CubieTruck的站点. 5 ...
- IPA打包图片错误问题
CopyPNGFile /Users/gongihou/Library/Developer/Xcode/DerivedData/KTVgo-frborfduejxrajgpkfdaipygijow/B ...
- 怎样选择正确的HTTP状态码
本文来源于我在InfoQ中文站翻译的文章.原文地址是:http://www.infoq.com/cn/news/2015/12/how-to-choose-http-status-code 众所周知. ...