[bzoj2599][IOI2011]Race_树上点分治
Race bzoj-2599
题目大意:询问一颗树上最短的、长度为k的链,边有边权,n个节点。
注释:$1\le n \le 2\cdot 10^5$,$1\le k \le 10^6$。
想法:树上点分治的另一种表现方式。首先,由于题目中要求的是最小值,我们发现这东西可加不可减。不可减意味着什么?意味着我们递归计算当前树时无法将它的单个子树的情况减掉。所以之前的单步容斥的算法就收到了打压qwq。我们思考另一种方法。首先,类似于dfs的,我一定是对于当前root一颗子树一颗子树地递归,只有当前子树的信息已经完全处理好的情况下我才会去处理下一颗子树。这就相当于我在处理当前子树的时候之前的子树已经是完善的了。所以,我可以开一个桶,记录长度为i的链的最短长度,然后对于当前子树我可以直接调用桶中信息,即可。然后,还原桶的操作是简单的,就是说如果当前桶所代表的边权小于等于k,那么久有可能是被更新过的,将其还原即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
using namespace std;
const int inf=1<<30;
int to[2*N],nxt[2*N],head[N],val[N*2],tot;
int size[N],vis[N],v[N*5],f[N],dis[N],deep[N];
//dis数组表示当前节点到根节点之间的边权和
//deep数组表示当前节点到根节点路径深度,即链长度
//vis数组表示当前节点是否已经被删除(当过根节点)
//v数组是桶
int ms,root;
int n,k;
int ans=inf;
inline void add(int x,int y,int z)//加边
{
to[++tot]=y;
val[tot]=z;
nxt[tot]=head[x];
head[x]=tot;
}
void getroot(int pos,int fa)//找重心、处理size
{
size[pos]=1;
f[pos]=0;
for(int i=head[pos];i;i=nxt[i])
{
if(to[i]==fa||vis[to[i]]) continue;
getroot(to[i],pos);
size[pos]+=size[to[i]];
f[pos]=max(size[to[i]],f[pos]);
}
f[pos]=max(f[pos],ms-size[pos]);
if(f[root]>f[pos]) root=pos;
// puts("getroot");
}
void clear(int pos,int fa)//还原桶
{
if(dis[pos]<=k) v[dis[pos]]=inf;
for(int i=head[pos];i;i=nxt[i])
{
if(to[i]==fa||vis[to[i]]) continue;
clear(to[i],pos);
}
// puts("clear");
}
void insert(int pos,int fa)//修改桶
{
if(dis[pos]<=k)
{
v[dis[pos]]=min(v[dis[pos]],deep[pos]);
}
for(int i=head[pos];i;i=nxt[i])
{
if(vis[to[i]]||to[i]==fa) continue;
insert(to[i],pos);
// puts("insert");
}
}
void calc(int pos,int fa)//计算答案
{
if(dis[pos]<=k)
{
ans=min(ans,deep[pos]+v[k-dis[pos]]);
}
for(int i=head[pos];i;i=nxt[i])
{
if(vis[to[i]]||to[i]==fa) continue;
deep[to[i]]=deep[pos]+1;
dis[to[i]]=dis[pos]+val[i];
calc(to[i],pos);
}
// puts("calc");
}
void solve(int pos)//点分治过程
{
vis[pos]=true;
// deep[pos]=0;
v[0]=0;
for(int i=head[pos];i;i=nxt[i])
{
if(vis[to[i]]) continue;
deep[to[i]]=1;
dis[to[i]]=val[i];
calc(to[i],0);
insert(to[i],0);
}
for(int i=head[pos];i;i=nxt[i])
{
if(vis[to[i]]) continue;
clear(to[i],0);
}
for(int i=head[pos];i;i=nxt[i])
{
if(vis[to[i]]) continue;
ms=size[to[i]];
root=0;
getroot(to[i],0);
solve(root);
}
// puts("solve");
}
int main()
{
// int n,k;
scanf("%d%d",&n,&k);
for(int x,y,z,i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x+1,y+1,z);//点编号是从0开始的
add(y+1,x+1,z);
}
// v[0]=0;
for(int i=1;i<=k;i++)
{
v[i]=inf;
}
root=0;
f[0]=n;
// dfs(1);
ms=n;
getroot(1,0);
// printf("%d\n",root);
solve(root);
if(ans==inf) printf("-1\n");
else printf("%d\n",ans);
return 0;
}
小结:一定要注意dis数组和deep数组分别的含义。然后主函数里所有函数的fa都是0,因为是递归处理,但是其实将fa改成pos也没有问题,因为pos节点已经当过重心、被删除了。
[bzoj2599][IOI2011]Race_树上点分治的更多相关文章
- bzoj2599: [IOI2011]Race(点分治)
写了四五道点分治的题目了,算是比较理解点分治是什么东西了吧= = 点分治主要用来解决点对之间的问题的,比如距离为不大于K的点有多少对. 这道题要求距离等于K的点对中连接两点的最小边数. 那么其实道理是 ...
- [luogu4149][bzoj2599][IOI2011]Race【点分治】
题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 K,且边的数量最小. 题解 比较明显需要用到点分治,我们定义\(d\)数组表示当前节点到根节点\(rt\)之间有多少个节点,也可以表示有多少 ...
- 2019.01.09 bzoj2599: [IOI2011]Race(点分治)
传送门 题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 思路: 考虑点分治如何合并. 我们利用树形dpdpdp求树的直径的方法,边dfsdfsdfs子树边统计答案即可. 代码: ...
- BZOJ2599 [IOI2011]Race 【点分治】
题目 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 输入格式 第一行 两个整数 n, k 第二..n行 每行三个整 ...
- BZOJ_2599_[IOI2011]Race_点分治
BZOJ_2599_[IOI2011]Race_点分治 Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 10 ...
- [bzoj2599][IOI2011]Race——点分治
Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...
- 【BZOJ2599】Race(点分治)
[BZOJ2599]Race(点分治) 题面 BZOJ权限题,洛谷 题解 好久没写过点分治了... 在ppl的帮助下终于想起来了 orz ppl 首先回忆一下怎么求有没有正好是\(K\)的路径 维护一 ...
- codeforces 161D Distance in Tree 树上点分治
链接:https://codeforces.com/contest/161/problem/D 题意:给一个树,求距离恰好为$k$的点对是多少 题解:对于一个树,距离为$k$的点对要么经过根节点,要么 ...
- POJ 1741 Tree 树上点分治
题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...
随机推荐
- win10系统下,开启数据库远程连接方式
右键左下角的windows标志,选择控制面板 2.查看方式修改为大图标 3.选择高级设置 4.新建入站规则 5.选择端口然后下一步 6.选择tcp协议,端口输入80,3306 7.选择允许连接 8.规 ...
- [Swift通天遁地]九、拔剑吧-(4)使用开源类库创建可滑动的Segment分段控件
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- Codeforces 792C
题意:给出一个由0到9数字构成的字符串,要求删去最少的数位,使得这个字符串代表的数能被3整除,同时要求不能有前导零,并且至少有一位(比如数字11,删去两个1后就没有数位了,所以不符合).如果能够处理出 ...
- Android源码下载方法
1. 下载 repo 工具 mkdir ~/bin PATH=~/bin:$PATH curl https://storage.googleapis.com/git-repo-downloads/re ...
- 关于debug.keystore文件用法以及错误处理
在开发过程中需要频繁的为测试的同事签名apk,非常很麻烦,把默认debug.keystore文件替换成发布用(生产环境)的签名文件,不用频繁地签名apk文件了. 如果直接使用生产keysto ...
- mysql zip版本如何安装
1.下载mysqlzip包并解压到D:\javadeveloper\mysql-5.6.24-winx642.配置环境变量在path中添加路径 D:\javadeveloper\mysql-5.6.2 ...
- 视频cover占满
/* 关键属性 */ object-fit: fill; //被替换的内容的大小,以填补该元素的内容框:对象的具体对象的大小是元素的使用宽度和高度. object-fit: contain;被替换的内 ...
- 数字化婚姻配对尝试问题(C++实现)
问题描述:一.标题: 数字化婚姻配对尝试 二.题目: 建立一个模型,来模拟推导社会男女择偶过程. 为了模型简化,一个人的特性指标有三个,这里假设为财富.样貌.品格,每个指标均可取值1-100之间任意数 ...
- 基于owncloud构建私有云储存网盘
注意事项:需要ping通外网 需要LAMP架构yum -y install httpd php php-mysql mariadb-server mariadb sqlite php-dom php- ...
- 前端领域的BEM到底是什么
前端领域的BEM到底是什么 BEM - Block Element Modfier(块元素编辑器) BEM方法确保每一个参加了同一网站开发项目的人,基于一套代码规范去开发,这样非常有利于团队成员理解彼 ...