caffe框架自带的例子mnist里有一个lenet_solver.prototxt文件,这个文件是具体的训练网络的引入文件,定义了CNN网络架构之外的一些基础参数,如总的迭代次数、测试间隔、基础学习率、基础学习率的更新策略、训练平台(GPU或CPU)等。

# The train/test net protocol buffer definition   //对训练和测试网络的定义
//网络的路径,可以使用绝对路径或者相对路径
net: "D:/Software/Caffe/caffe-master/examples/mnist/lenet_train_test.prototxt"
//test_iter参数定义训练流程中前向传播的总批次数
# test_iter specifies how many forward passes the test should carry out.
//在MNIST中,定义的是每批次100张图片,一共100个批次,覆盖了全部10000个测试图例
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images. /*
test_iter是定义的测试图例分为多少批次,由于一次性执行所有的测试图例效率很低,所以把测试
图例分为几个批次来依次执行,每个批次包含的图例数量是在net网络的模型文件.prototxt中的
batch_size变量定义的,test_iter*batch_size等于总的测试图集数量
*/
test_iter: 100
//测试间隔,训练没迭代500次后执行一次测试(测试是为了获得当前模型的训练精度)
# Carry out testing every 500 training iterations.
test_interval: 500 /*
网络的学习率设置
1. base_lr:表示base learning rate,基础学习率,一般在网络模型中的每一层都会定义两个名称为
“lr_mult”的学习率系数,这个学习率系数乘上基础学习率(base_lr*lr_mult)才是最终的学习率
2. momentum:冲量单元是梯度下降法中一种常用的加速技术,作用是有助于训练过程中逃离局部
最小值,使网络能够更快速的收敛,具体的值是经过反复的迭代调试获得的经验值
3. weight_decay:权值衰减的设置是为了防止训练出现过拟合,在损失函数中,weight_decay是放
在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度。weight_decay可以调节
模型复杂度对损失函数的影响,提高模型的泛化能力
*/
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005 /*
学习率修改策略
以上设置的是初始学习率参数,在训练过程中,依据需要,可以不断调整学习率的参数,调整的策略是
通过lr_policy定义的 lr_policy可以设置为下面这些值,相应的学习率的计算为:
- fixed:   保持base_lr不变.
- step:    如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- exp:   返回base_lr * gamma ^ iter, iter为当前迭代次数
- inv:   如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
- poly:    学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
*/
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
//每迭代100次显示一次执行结果
# Display every 100 iterations
display: 100
//最大迭代次数
# The maximum number of iterations
max_iter: 10000
//生成中间结果,记录迭代5000次之后结果,定义caffeModel文件生成路径
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "D:/Software/Caffe/caffe-master/examples/mnist/lenet"
//运行模式,CPU或者GPU
# solver mode: CPU or GPU
solver_mode: GPU

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

可以设定网络经过多少次迭代训练之后去评价当前的网络。

caffe中lenet_solver.prototxt配置文件注解的更多相关文章

  1. caffe中lenet_train_test.prototxt配置文件注解

    caffe框架下的lenet.prototxt定义了一个广义上的LeNet模型,对MNIST数据库进行训练实际使用的是lenet_train_test.prototxt模型. lenet_train_ ...

  2. 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别

    本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...

  3. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

  4. Caffe中deploy.prototxt 和 train_val.prototxt 区别

    之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下 本人以熟悉的LeNet网络结构为例子 不同点主要在一前一后,相同点都在中间 train ...

  5. caffe中通过prototxt文件查看神经网络模型结构的方法

    在修改propotxt之前我们可以对之前的网络结构进行一个直观的认识: 可以使用http://ethereon.github.io/netscope/#/editor 这个网址. 将propotxt文 ...

  6. caffe 中solver.prototxt

    关于cifar-10和mnist的weight_decay和momentum也是相当的重要:就是出现一次把cifar-10的两个值直接用在mnist上,发现错误很大.

  7. caffe中LetNet-5卷积神经网络模型文件lenet.prototxt理解

    caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "Le ...

  8. Windows下使用python绘制caffe中.prototxt网络结构数据可视化

    准备工具: 1. 已编译好的pycaffe 2. Anaconda(python2.7) 3. graphviz 4. pydot  1. graphviz安装 graphviz是贝尔实验室开发的一个 ...

  9. 配置caffe中出现的问题汇总

    1,运行下面代码时: sudo apt-get install libopencv 出错: E: 无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系 原因: 源(source ...

随机推荐

  1. 避免ANR异常

    避免ANR异常 不要在主线程中执行耗时的代码,不然很容易出现anr错误. 原因: 解决方法:

  2. android中进程的优先级

    android中进程的优先级

  3. hdoj--1251--统计难题(字典树)

    统计难题 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131070/65535 K (Java/Others) Total Subm ...

  4. 关于ubuntu中文输入调用不出来的解决办法,具体如正文。

    卸载了 fcitx sudo apt-get remove fcitx 重启 sudo reboot 重新安装 fcitxsudo apt-get install fcitx 安装拼音输入法sudo ...

  5. less使用方法总结

    1 变量 我们常常在 CSS 中 看到同一个值重复多次,这样难易于代码维护. 理想状态,应是下面这样: const bgColor="skyblue"; $(".post ...

  6. 利用 js 获取地址栏参数

    1.aspx页面,进行页面跳转 window.location.href = "ProviderInfo.aspx?ProviderID="+ProviderID; 2.Provi ...

  7. elasticsearch集群添加节点

    最简配置文件: cluster.name:  your_cluster_name node.name:  your_ip network.host: 0.0.0.0 http.port: your_p ...

  8. day06-1 与用户交互以及格式化输出

    目录 Python的与用户交互 Python2的input和raw_input(了解) 格式化输出 占位符 format函数格式化字符串 f-string格式化(方便) Python的与用户交互 in ...

  9. linux 源码包安装拾遗

    源码包安装和apt-get/yum的区别 安装前的区别:概念上的区别 rpm和dpkg包是经过编译过的包,并且其安装位置由厂商说了算,厂商觉得安装在哪里合适,就会装在哪里,而源码包则是没有经过编译的文 ...

  10. POJ 3122 Pie( 二分搜索 )

    链接:传送门 题意:一个小朋友开生日派对邀请了 F 个朋友,排队上有 N 个 底面半径为 ri ,高度为 1 的派,这 F 个朋友非常不友好,非得"平分"这些派,每个人都不想拿到若 ...