题目链接:传送门

题意:

一个图有n个顶点。已知邻接矩阵。问点能够反复用长度小于m的路径有多少。

分析:

首先我们知道了邻接矩阵A。那么A^k代表的就是长度为k的路径有多少个。

那么结果就是A^0+A^1+A^2+...+A^m。

然后我们能够构造一个矩阵来帮助我们求解。

X = | A , E |

| 0 , E |

==> 然后X^m 的矩阵的右上角的矩阵代表的就是A^0+A^1+A^2+...+A^m。

当然A^0+A^1+A^2+...+A^m,也能够用二分来求。

代码例如以下:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std; const int maxn = 51*2; const int mod = 2015; typedef long long LL; struct matrix{
int a[maxn][maxn];
matrix(){
memset(a,0,sizeof(a));
}
}; matrix I; void init(){
for(int i=0;i<maxn;i++)
I.a[i][i]=1;
} int n,m; matrix multi(matrix A,matrix B){
matrix C;
for(int i=0;i<2*n;i++){
for(int j=0;j<2*n;j++){
for(int k=0;k<2*n;k++){
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j]);
}
C.a[i][j]%=mod;
}
}
return C;
} matrix add(matrix A,matrix B){
matrix C;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
C.a[i][j]=(A.a[i][j]+B.a[i][j])%mod;
}
}
return C;
} int quick_mod(matrix A,int b){
matrix ans = I;
while(b){
if(b&1) ans = multi(ans,A);
b>>=1;
A=multi(A,A);
}
int sum = 0;
for(int i=0;i<n;i++){
for(int j=n;j<n*2;j++)
sum=sum+ans.a[i][j];
}
// cout<<"----------ans------------"<<endl;
// for(int i=0;i<2*n;i++){
// for(int j=0;j<2*n;j++)
// cout<<ans.a[i][j]<<" ";
// cout<<endl;
// }
// cout<<"----------ans------------"<<endl;
return sum%mod;
} int main()
{
init();
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
matrix A,B;
for(int i=0;i<n;i++){
int k,u;
scanf("%d",&k);
while(k--){
scanf("%d",&u);
A.a[i][--u]=1;
}
}
for(int i=0;i<n;i++) A.a[i][i+n]=1;
for(int i=n;i<2*n;i++) A.a[i][i]=1;
// cout<<"----------A------------"<<endl;
// for(int i=0;i<2*n;i++){
// for(int j=0;j<2*n;j++)
// cout<<A.a[i][j]<<" ";
// cout<<endl;
// }
// cout<<"----------A------------"<<endl;
int sum = quick_mod(A,m);
printf("%d\n",sum+1);
}
return 0;
}

HDU5411CRB and Puzzle(矩阵高速幂)的更多相关文章

  1. hdu 5411 CRB and Puzzle 矩阵高速幂

    链接 题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/ 给定n个点 常数m 以下n行第i行第一个数字表示i点的出边数.后面给出这些 ...

  2. HDOJ 5411 CRB and Puzzle 矩阵高速幂

    直接构造矩阵,最上面一行加一排1.高速幂计算矩阵的m次方,统计第一行的和 CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  3. hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...

  4. HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) T ...

  5. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  6. UVA10518 - How Many Calls?(矩阵高速幂)

    UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...

  7. HDU2842-Chinese Rings(递推+矩阵高速幂)

    pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...

  8. HDU2276 - Kiki &amp; Little Kiki 2(矩阵高速幂)

    pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...

  9. uva 10655 - Contemplation! Algebra(矩阵高速幂)

    题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...

随机推荐

  1. 4种方法让SpringMVC接收多个对象

    问题背景: 我要在一个表单里同一时候一次性提交多名乘客的个人信息到SpringMVC,前端HTML和SpringMVC Controller里该怎样处理? 第1种方法:表单提交,以字段数组接收: 第2 ...

  2. 安卓项目开发实战(1)--首页顶部菜单BAR实现

    从今天開始,我将開始自己手写一个星座运势的项目,星座运势的数据来源採用MYAPI的星座数据,client全然自己实现. 这个系列主要是讲project中主要界面的布局展示和一些项目中的难点解析.因为本 ...

  3. php PDO连接mysql

    近期在linux装了新的环境.php5.6+mysql5.5+nginx. 然后用原来的mysql链接数据库出现的错误. 原因就是说连接数据库的方法太旧.建议我用mysqli和PDO来连接数据库. 好 ...

  4. centos 下 KVM虚拟机的创建、管理与迁移

    kvm虚拟机管理 一.环境 role         hostname    ip                  OS kvm_server   target      192.168.32.40 ...

  5. c2

    #include <stdio.h> int main() { // 整型常量 ; // 实型常量(小数) // 单精度float / 双精度double // 注意: 默认情况下编写的小 ...

  6. 机器学习 LR中的参数迭代公式推导——极大似然和梯度下降

    Logistic本质上是一个基于条件概率的判别模型(DiscriminativeModel). 函数图像为: 通过sigma函数计算出最终结果,以0.5为分界线,最终结果大于0.5则属于正类(类别值为 ...

  7. PHPMailer使用说明

    PHPMailer是一个用来发送电子邮件的函数包,远比PHP提供的mail()方便易用. 邮件格式说明 一封普通的电子邮件,通常是由发件人.收件人.抄送人.邮件标题.邮件内容.附件等内容构成.以下是一 ...

  8. css+html应用实例1:滑动门技术的简单实现

    关于滑动门,现在的页面中好多地方都会用到滑动门,一般用作于导航背景,它的官方解释如下: 滑动门:根据文本自适应大小,根据背景的层叠性制作,并允许他们在彼此之上进行滑动,以创造出一些特殊的效果. 为什么 ...

  9. Typescript 模拟实现 多继承

    class Animal{ eat():void{ alert("animal eat"); } } class Mamal extends Animal{ breathe() : ...

  10. 安装wampserver遇到的问题及解决方案

    丢失api-ms-win-crt-runtime-l1-1-0.dll 安装完wampserver,启动服务器的时候遇到一些问题,提示说缺失dll文件,如下图所示: 网上一搜,很多人出现过丢失api- ...