HDU5411CRB and Puzzle(矩阵高速幂)
题目链接:传送门
题意:
一个图有n个顶点。已知邻接矩阵。问点能够反复用长度小于m的路径有多少。
分析:
首先我们知道了邻接矩阵A。那么A^k代表的就是长度为k的路径有多少个。
那么结果就是A^0+A^1+A^2+...+A^m。
然后我们能够构造一个矩阵来帮助我们求解。
X = | A , E |
| 0 , E |
==> 然后X^m 的矩阵的右上角的矩阵代表的就是A^0+A^1+A^2+...+A^m。
当然A^0+A^1+A^2+...+A^m,也能够用二分来求。
代码例如以下:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std; const int maxn = 51*2; const int mod = 2015; typedef long long LL; struct matrix{
int a[maxn][maxn];
matrix(){
memset(a,0,sizeof(a));
}
}; matrix I; void init(){
for(int i=0;i<maxn;i++)
I.a[i][i]=1;
} int n,m; matrix multi(matrix A,matrix B){
matrix C;
for(int i=0;i<2*n;i++){
for(int j=0;j<2*n;j++){
for(int k=0;k<2*n;k++){
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j]);
}
C.a[i][j]%=mod;
}
}
return C;
} matrix add(matrix A,matrix B){
matrix C;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
C.a[i][j]=(A.a[i][j]+B.a[i][j])%mod;
}
}
return C;
} int quick_mod(matrix A,int b){
matrix ans = I;
while(b){
if(b&1) ans = multi(ans,A);
b>>=1;
A=multi(A,A);
}
int sum = 0;
for(int i=0;i<n;i++){
for(int j=n;j<n*2;j++)
sum=sum+ans.a[i][j];
}
// cout<<"----------ans------------"<<endl;
// for(int i=0;i<2*n;i++){
// for(int j=0;j<2*n;j++)
// cout<<ans.a[i][j]<<" ";
// cout<<endl;
// }
// cout<<"----------ans------------"<<endl;
return sum%mod;
} int main()
{
init();
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
matrix A,B;
for(int i=0;i<n;i++){
int k,u;
scanf("%d",&k);
while(k--){
scanf("%d",&u);
A.a[i][--u]=1;
}
}
for(int i=0;i<n;i++) A.a[i][i+n]=1;
for(int i=n;i<2*n;i++) A.a[i][i]=1;
// cout<<"----------A------------"<<endl;
// for(int i=0;i<2*n;i++){
// for(int j=0;j<2*n;j++)
// cout<<A.a[i][j]<<" ";
// cout<<endl;
// }
// cout<<"----------A------------"<<endl;
int sum = quick_mod(A,m);
printf("%d\n",sum+1);
}
return 0;
}
HDU5411CRB and Puzzle(矩阵高速幂)的更多相关文章
- hdu 5411 CRB and Puzzle 矩阵高速幂
链接 题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/ 给定n个点 常数m 以下n行第i行第一个数字表示i点的出边数.后面给出这些 ...
- HDOJ 5411 CRB and Puzzle 矩阵高速幂
直接构造矩阵,最上面一行加一排1.高速幂计算矩阵的m次方,统计第一行的和 CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory ...
- hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...
- HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) T ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- UVA10518 - How Many Calls?(矩阵高速幂)
UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...
- HDU2842-Chinese Rings(递推+矩阵高速幂)
pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...
- HDU2276 - Kiki & Little Kiki 2(矩阵高速幂)
pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...
- uva 10655 - Contemplation! Algebra(矩阵高速幂)
题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...
随机推荐
- Impala ODBC 安装笔记
Impala在线文档介绍了 Impala ODBC接口安装和配置 http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5 ...
- 沃通SSL精灵,让站点HTTPS永只是期
告别HTTP明文"裸奔"时代 百度.阿里巴巴.必应等越来越多的互联网巨头相继启用全站HTTPS加密,保护用户数据和隐私安全.逐步告别HTTP明文"裸奔"时代. ...
- 回车登录(支持IE 和 火狐等浏览器)
$("body").keydown(function(e){ var curKey = e.which; if(curKey == 13){ $("#Btn_login& ...
- yarn架构——本质上是在做解耦 将资源分配和应用程序状态监控两个功能职责分离为RM和AM
Hadoop YARN架构解读 原Mapreduce架构 原理架构图如下: 图 1.Hadoop 原 MapReduce 架构 原 MapReduce 程序的流程:首先用户程序 (JobClient) ...
- 如何用写js弹出层 ----2017-03-29
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- ROS-SLAM-自主导航
前言:无. 前提:已下载并编译了相关功能包集,如还未下载,可通过git下载:https://github.com/huchunxu/ros_exploring.git 一.启动仿真环境 cd ~/ca ...
- Core篇——初探依赖注入
目录 1.DI&&IOC简单介绍 2.UML类图中六种关联关系 3..net core 中DI的使用 4..net core DI初始化源码初窥 DI&&IOC简单介绍 ...
- Java基础——类和对象的初始化过程
本节把类和对象的初始化所涉及到的所有代码块阐述一边. 示例代码: public class Demo { private static String name; private String age; ...
- CLR寄宿和应用程序域
Win实际上将CLR作为一个COM服务器实现在一个DLL内,即为CLR定义了标准的COM接口,并为该接口和COM服务器分配一GUID,安装FrameWork时表示CLR的COM服务器被注册到注册表内. ...
- vue-cli 3.0 安装和创建项目流程
使用前我们先了解下3.0较2.0有哪些区别 一.3.0 新加入了 TypeScript 以及 PWA 的支持二.部分命令发生了变化: 1.下载安装 npm install -g vue@cli 2. ...