Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6635   Accepted: 3236

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 好后悔选了prime,真是找不到好的题型,都一样啊,要是选了网络流多好,虽然我也不会
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
double map[1010][1010];
bool vis[1010];
int n;
double x[110],y[110],z[110],r[110];
double dis(int a,int b)
{
double s=sqrt((z[a]-z[b])*(z[a]-z[b])+(x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
if(s-r[a]-r[b]<=0)
return 0;
return s-r[a]-r[b];
}
void init()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=i==j?0:INF;
}
void getmap()
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&x[i],&y[i],&z[i],&r[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=map[j][i]=dis(i,j);
}
void prime()
{
double Min,sum=0;
int next;
memset(vis,false,sizeof(vis));
vis[1]=true;
for(int i=2;i<=n;i++)
{
Min=INF;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&Min>map[1][j])
{
next=j;
Min=map[1][j];
}
}
sum+=Min;
vis[next]=true;
for(int j=1;j<=n;j++)
if(!vis[j])
map[1][j]=min(map[1][j],map[next][j]);
}
printf("%.3lf\n",sum);
}
int main()
{
while(scanf("%d",&n),n)
{
init();
getmap();
prime();
}
return 0;
}

poj--2031--Building a Space Station(prime)的更多相关文章

  1. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ - 2031 Building a Space Station 【PRIME】

    题目链接 http://poj.org/problem?id=2031 题意 给出N个球形的 个体 如果 两个个体 相互接触 或者 包含 那么 这两个个体之间就能够互相通达 现在给出若干个这样的个体 ...

  4. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  5. poj 2031 Building a Space Station(最小生成树,三维,基础)

    只是坐标变成三维得了,而且要减去两边的半径而已 题目 //最小生成树,只是变成三维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  9. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  10. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

随机推荐

  1. webpack 打包后 Uncaught SyntaxError: Unexpected token <

    问题描述:npm run dev 没报错.是可以正常运行的, npm run build 过程也没报错, 但是打开dist   index.html  就报错了  错误内容:       解决方法: ...

  2. iOS开发中如何实现同步、异步、GET、POST等请求实操演示!

    1.同步请求可以从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作, 2.异步请求不会阻塞主线程,而会建立一个新的线程来操作,用户发出异步请求后,依然 ...

  3. c#仿照qq登录界面编辑框内容操作

    using System; using System.Drawing; using System.Windows.Forms; namespace 案例演示 { public partial clas ...

  4. Java中接口与接口和类之间的关系

    接口和接口之间的关系 继承关系 可以多继承,并且可以多层继承 注意: 1.如果多个父接口中有同名的抽象方法,那么子接口只需要实现一次即可 2.如果多个父接口中有同名的默认方法,那么子接口必须重写默认方 ...

  5. windows设置右键菜单

    1. 打开注册表,(win + R,输入regedit) 2. 在 HKEY_CLASSES_ROOT\Directory\Background\shell 中,新建项:如(cmder),在 cmde ...

  6. Day 27 网络编程

    目录 网络架构及演变过程 网络架构 互联网和互联网的组成 互联网的组成(教材版) 互联网的组成(科普版) 互联网的硬件组成 互联网的软件组成 OSI七层协议 物理层 数据链路层 网络架构及演变过程 网 ...

  7. Linux内核源码特殊用法

    崇拜并且转载的: http://ilinuxkernel.com/files/5/Linux_Kernel_Source_Code.htm Linux内核源码特殊用法 1 前言 Linux内核源码主要 ...

  8. const浅析

    前言 c++中使用到const的地方有很多, 而且const 本身也针对不同的类型可能有不同的含义, 比如对指针就有顶层和底层. 本节就是探讨关于C++中const的在不同的地方不同表现或含义. co ...

  9. 第九节:numpy之随机数组及随机排列

  10. jquery源码分析(四)——回调对象 Callbacks

    借用百度百科来说明下回调函数: 回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数.回调函数不是由该 ...