洛谷 P2709 BZOJ 3781 小B的询问
题目描述
小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求$\sum_1^Kc_i^2$的值,其中$c_i$表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。
输入输出格式
输入格式:
第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。
输出格式:
M行,每行一个整数,其中第i行的整数表示第i个询问的答案。
输入输出样例
6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6
6
9
5
2
说明
对于全部的数据,1<=N、M、K<=50000
吐槽
BZOJ居然把这题设成权限题,我们这种穷人做不起啊,放个题号吧。
我的代码在洛谷上跑的挺快,刚开始没开O2,跑了1900+ms,然后去大牛分站交了一波,瞬间540毫秒,rank3了啊!估计我的程序最大的耗时处在两个sort上,algorithm里的东西和STL里的东西缺氧,吸了氧就跑得飞快,几乎是缺氧时的四倍速度了。
后来加快读、乘法换成位运算、另开一个数组$O(m)$记录答案而不是第二次排序,尤其是最后一项,整整少了60ms,终于卡到了473ms,目前的洛谷rank1.
解题思路
一道裸的莫队。莫队的原理可以看我这篇博文,每个莫队题目最重要的步骤都是推导出区间中减少一个元素或加入一个元素后答案的变化。
这题推公式不难。设当前区间$[l,r]$的答案为$t$,那么增加(l--或r++)一个元素时,设增加元素的颜色为k (l-1或r+1),$f(k)$为题目中的$c(k)$,那么$t+=(f(k)+1)^2-f^2(k)=2*f(k)+1$,同理,减少一个颜色为k的元素时$t-=f^2(k)-(f(k)-1)^2=2*f(k)-1$,于是就套上莫队的标志“四个while”吧。
源代码
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std; inline int get()
{
char c;short f = ; int res = ;
while (( (c=getchar())<||c>) && c!= '-');
if (c=='-') f = -;
else res = c- '';
while ( (c = getchar()) >= && c <= )
res = res * + c -'';
return f *res;
} int n,m,k;
int c[]={};
int f[]={}; struct query{
int id,pos,l,r,ans;
}a[];
int aa[]={};
inline int cmp1(const query & a,const query & b)
{
return a.pos==b.pos?a.r<b.r:a.pos<b.pos;
}
int main()
{
n=get(),m=get(),k=get();
for(int i=;i<=n;i++)
c[i]=get();
for(int i=,l,r,kuai=sqrt(n);i<=m;i++)
{
l=get();
r=get();
a[i]={i,l/kuai,l,r,};
}
sort(a+,a++m,cmp1);
for(int i=,l=,r=,t=;i<=m;i++)
{
while(r<a[i].r)
{
r+=;
t+=(f[c[r]]<<)+;
f[c[r]]+=;
}
while(l<a[i].l)
{
t-=(f[c[l]]<<)-;
f[c[l]]--;
l++;
}
while(l>a[i].l)
{
l--;
t+=(f[c[l]]<<)+;
f[c[l]]++;
}
while(r>a[i].r)
{
t-=(f[c[r]]<<)-;
f[c[r]]--;
r--;
}
a[i].ans=t;
}
for(int i=;i<=m;i++) aa[a[i].id]=a[i].ans-;
for(int i=;i<=m;i++) printf("%d\n",aa[i]);
return ;
}
洛谷 P2709 BZOJ 3781 小B的询问的更多相关文章
- 洛谷P2709 BZOJ 3781 小B的询问 (莫队)
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- BZOJ 3781: 小B的询问
3781: 小B的询问 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 643 Solved: 435[Submit][Status][Discuss ...
- bzoj 3781: 小B的询问 分块
3781: 小B的询问 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solved: 135[Submit][Status] Descrip ...
- Bzoj 3781: 小B的询问 莫队,分块,暴力
3781: 小B的询问 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 426 Solved: 284[Submit][Status][Discuss ...
- 【模板】BZOJ 3781: 小B的询问 莫队算法
http://www.lydsy.com/JudgeOnline/problem.php?id=3781 N个数的序列,每次询问区间中每种数字出现次数的平方和,可以离线. 丢模板: #include ...
- bzoj 3781 小B的询问——分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3781 非常经典的分块套路.于是时间空间比大家的莫队差了好多…… #include<io ...
- bzoj 3781 小B的询问 —— 莫队
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3781 就是莫队,左端点分块排序,块内按右端点排序,然后直接做即可. 代码如下: #inclu ...
- bzoj 3781 小B的询问(莫队算法)
[题意] 若干个询问sigma{ cnt[i]^2 } cnt[i]表示i在[l,r]内的出现次数. [思路] 莫队算法,裸题. 一个cnt数组即可维护插入与删除. [代码] #include< ...
- BZOJ 3781: 小B的询问 [莫队]
求区间每种颜色出现次数平方和 写裸题练手 #include <iostream> #include <cstdio> #include <algorithm> #i ...
随机推荐
- 树形 DP 总结
树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...
- 用JS将指定时间转化成用户当地时区的时间
公司的项目是面向海外用户的,但是最初的设计没考虑到时差问题,存入数据库的时间都是东八区的时间,导致现在补救有点坑爹...... 有一个需求是,产品详细页需要注明此款产品的开售时间,当海外的用户来访问这 ...
- Zeppelin0.6.2之shiro安全配置 初探
0.序 默认情况下,Zeppelin安装好并且配置完zeppelin-site.xml和zeppelin-env.sh后,我们进入的模式,从右上角就能看出来是anonymous模式,这种模式下会看见所 ...
- C#之调用存储过程
C#调用存储过程 以下内容可能有错漏之处,请大家多多指教. C#后台代码如下: //调用存储过程的方法public static void Startupworkflow(string first ...
- 9 在C#控制台程序(console)中让用户输入
经过前面那些练习,我们已经熟悉录入一些简单的代码.这些代码可以进行一些简单的运算,在dos窗口打印出一些东西出来.我们现在要开始学习如何把数据从外部输入到我们的程序中. 其实大多数程序的工作是完成下面 ...
- 快速录入快递地址API接口实现
电商.ERP等行业下单环节极其重要,如何提高下单的效率已经成为首要问题.快速下单对于客户来说,为提前发货争取了时间:对于卖家来说,提高了库存周转率及利用率.快速下单的接口实现,需要解决如下几个问题:1 ...
- Beta冲刺-星期四
这个作业属于哪个课程 <课程的链接> 这个作业要求在哪里 <作业要求的链接> 团队名称 Three cobblers 这个作业的目标 完成今天的冲刺 一 ...
- Android第三方登陆之新浪微博Weibo篇(原生登陆授权)
前言 Android第三方登录可以说是非常的常见,今天主要先说一下新浪微博第三方登陆授权. SDK版本支持 SDK v3.0已经发布了支持iPhone和Android的版本. 须将你的应用的包名签名信 ...
- 关于MVC4.0版本以上的RegisterBundles用法
public class BundleConfig { //新建了一个项目文件,打开App_Start下的BundleConfig看看, public static void RegisterBund ...
- Canopy聚类算法分析
原文链接:http://blog.csdn.net/yclzh0522/article/details/6839643 Canopy聚类算法是可以并行运行的算法,数据并行意味着可以多线程进 ...