Spring Cloud-Ribbon负载均衡策略类IRule(五)
IRule
IRule
AbstractloadBalancerRule
负载均衡策略抽象类 负责获得负载均衡器 保存在内部 通过负载均衡器维护的信息 作为分配的依据
- public abstract class AbstractLoadBalancerRule implements IRule, IClientConfigAware {
- private ILoadBalancer lb;
- @Override
- public void setLoadBalancer(ILoadBalancer lb){
- this.lb = lb;
- }
- @Override
- public ILoadBalancer getLoadBalancer(){
- return lb;
- }
- }
RandomRule
随机选择一个服务的策略
- public class RandomRule extends AbstractLoadBalancerRule {
- @edu.umd.cs.findbugs.annotations.SuppressWarnings(value = "RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE")
- public Server choose(ILoadBalancer lb, Object key) {
- if (lb == null) {
- return null;
- }
- Server server = null;
- while (server == null) {
- if (Thread.interrupted()) {
- return null;
- }
- //通过负载均衡器获得可用服务
- List<Server> upList = lb.getReachableServers();
- //通过负载均衡器获得所有服务
- List<Server> allList = lb.getAllServers();
- int serverCount = allList.size();
- //没有服务返回空
- if (serverCount == 0) {
- /*
- * No servers. End regardless of pass, because subsequent passes
- * only get more restrictive.
- */
- return null;
- }
- //通过ThreadLocalRandom.current().nextInt(serverCount); 获得一个随机数
- int index = chooseRandomInt(serverCount);
- //获得一个随机的服务
- server = upList.get(index);
- if (server == null) {
- /**
- * 线程让步 将线程的cpu执行时间让步出来 可以理解为本来是排队有序的做一件事情
- * 然后轮到那个人的时候他突然说 大家一起竞赛吧 谁先抢到就是谁的 也包括自己 线程优先级越高 获得的机率越大
- */
- Thread.yield();
- continue;
- }
- //判断服务是否有效
- if (server.isAlive()) {
- return (server);
- }
- // Shouldn't actually happen.. but must be transient or a bug.
- server = null;
- Thread.yield();
- }
- return server;
- }
RoundRobinRule
- public class RoundRobinRule extends AbstractLoadBalancerRule {
- private AtomicInteger nextServerCyclicCounter;
- public Server choose(ILoadBalancer lb, Object key) {
- if (lb == null) {
- log.warn("no load balancer");
- return null;
- }
- Server server = null;
- int count = 0;
- while (server == null && count++ < 10) {
- //获得所有有效服务
- List<Server> reachableServers = lb.getReachableServers();
- //获得所有服务
- List<Server> allServers = lb.getAllServers();
- int upCount = reachableServers.size();
- int serverCount = allServers.size();
- if ((upCount == 0) || (serverCount == 0)) {
- log.warn("No up servers available from load balancer: " + lb);
- return null;
- }
- //获得线性轮训 当前轮到的服务下标
- int nextServerIndex = incrementAndGetModulo(serverCount);
- //去除服务
- server = allServers.get(nextServerIndex);
- if (server == null) {
- //让出cpu执行时间
- Thread.yield();
- continue;
- }
- if (server.isAlive() && (server.isReadyToServe())) {
- return (server);
- }
- // Next.
- server = null;
- }
- if (count >= 10) {
- log.warn("No available alive servers after 10 tries from load balancer: "
- + lb);
- }
- return server;
- }
- private int incrementAndGetModulo(int modulo) {
- //死循环
- for (;;) {
- //cas AtomicInteger 类 保证++的原子性
- int current = nextServerCyclicCounter.get();
- //线性轮训算法
- int next = (current + 1) % modulo;
- //compareAndSet的作用是防止多线程下还没执行到这一句 current被修改 如果被修改返回false 重新开始
- if (nextServerCyclicCounter.compareAndSet(current, next))
- return next;
- }
- }
RetryRule
- /**
- * 具有重试机制的Rule
- */
- public class RetryRule extends AbstractLoadBalancerRule {
- //内部默认维护一个线性轮训的Rule
- IRule subRule = new RoundRobinRule();
- long maxRetryMillis = 500;
- public RetryRule(IRule subRule) {
- this.subRule = (subRule != null) ? subRule : new RoundRobinRule();
- }
- public RetryRule(IRule subRule, long maxRetryMillis) {
- this.subRule = (subRule != null) ? subRule : new RoundRobinRule();
- this.maxRetryMillis = (maxRetryMillis > 0) ? maxRetryMillis : 500;
- }
- public IRule getRule() {
- return subRule;
- }
- /**
- * 内部找到就返回 找不到就重试
- * @param lb
- * @param key
- * @return
- */
- public Server choose(ILoadBalancer lb, Object key) {
- long requestTime = System.currentTimeMillis();
- //尝试结束时间 maxRetryMillis阈值 可配置
- long deadline = requestTime + maxRetryMillis;
- Server answer = null;
- answer = subRule.choose(key);
- if (((answer == null) || (!answer.isAlive()))
- && (System.currentTimeMillis() < deadline)) {
- InterruptTask task = new InterruptTask(deadline
- - System.currentTimeMillis());
- /**
- * new Tread().interrupt()给线程增加一个中断标志 但是并不会影响线程执行 但是如果这个时候对线程执行sleep和 wait 底层会将中断状态重置为false并抛出异常InterruptedException 所以我们可以根据捕获这个异常判断线程是否中断
- * Thread.interrupted()判断线程的中断状态 并重置线程的中断状态为false
- * new Tread().isInterrupted();仅仅判断线程是否中断不会重置
- */
- while (!Thread.interrupted()) {
- answer = subRule.choose(key);
- if (((answer == null) || (!answer.isAlive()))
- && (System.currentTimeMillis() < deadline)) {
- /* pause and retry hoping it's transient */
- Thread.yield();
- } else {
- break;
- }
- }
- task.cancel();
- }
- if ((answer == null) || (!answer.isAlive())) {
- return null;
- } else {
- return answer;
- }
- }
- /**
- * RoundRobinRule的扩展
- * 内部根据实例运行情况来进行权重 并根据权重挑选实例
- */
- public class WeightedResponseTimeRule extends RoundRobinRule {
- void initialize(ILoadBalancer lb) {
- if (this.serverWeightTimer != null) {
- this.serverWeightTimer.cancel();
- }
- this.serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + this.name, true);
- //开启一个定时任务为实例进行统计 用于计算权重 默认30秒执行一次
- this.serverWeightTimer.schedule(new WeightedResponseTimeRule.DynamicServerWeightTask(), 0L, (long)this.serverWeightTaskTimerInterval);
- WeightedResponseTimeRule.ServerWeight sw = new WeightedResponseTimeRule.ServerWeight();
- sw.maintainWeights();
- Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
- public void run() {
- WeightedResponseTimeRule.logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + WeightedResponseTimeRule.this.name);
- WeightedResponseTimeRule.this.serverWeightTimer.cancel();
- }
- }));
- }
- @SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})
- public Server choose(ILoadBalancer lb, Object key) {
- if (lb == null) {
- return null;
- } else {
- Server server = null;
- while(server == null) {
- //获得权重
- List<Double> currentWeights = this.accumulatedWeights;
- if (Thread.interrupted()) {
- return null;
- }
- //获得所有服务
- List<Server> allList = lb.getAllServers();
- int serverCount = allList.size();
- if (serverCount == 0) {
- return null;
- }
- int serverIndex = 0;
- //获得最后一个权重
- double maxTotalWeight = currentWeights.size() == 0 ? 0.0D : (Double)currentWeights.get(currentWeights.size() - 1);
- //如果权重大于0.01
- if (maxTotalWeight >= 0.001D && serverCount == currentWeights.size()) {
- //通过随机数计算一个权重
- double randomWeight = this.random.nextDouble() * maxTotalWeight;
- int n = 0;
- for(Iterator var13 = currentWeights.iterator(); var13.hasNext(); ++n) {
- Double d = (Double)var13.next();
- //如果实例在那个权重区间 则定位此服务索引
- if (d >= randomWeight) {
- serverIndex = n;
- break;
- }
- }
- //返回对应实例
- server = (Server)allList.get(serverIndex);
- } else {
- //如果实例的权重小于0.0.1 则采用父类的线性轮训算法
- server = super.choose(this.getLoadBalancer(), key);
- if (server == null) {
- return server;
- }
- }
- if (server == null) {
- Thread.yield();
- } else {
- if (server.isAlive()) {
- return server;
- }
- server = null;
- }
- }
- return server;
- }
- }
- void setWeights(List<Double> weights) {
- this.accumulatedWeights = weights;
- }
- public void initWithNiwsConfig(IClientConfig clientConfig) {
- super.initWithNiwsConfig(clientConfig);
- this.serverWeightTaskTimerInterval = (Integer)clientConfig.get(WEIGHT_TASK_TIMER_INTERVAL_CONFIG_KEY, 30000);
- }
- class ServerWeight {
- ServerWeight() {
- }
- public void maintainWeights() {
- ILoadBalancer lb = WeightedResponseTimeRule.this.getLoadBalancer();
- if (lb != null) {
- if (WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.compareAndSet(false, true)) {
- try {
- WeightedResponseTimeRule.logger.info("Weight adjusting job started");
- AbstractLoadBalancer nlb = (AbstractLoadBalancer)lb;
- //获得统计信息
- LoadBalancerStats stats = nlb.getLoadBalancerStats();
- if (stats != null) {
- //保存所有实例的的平均响应时间总和
- double totalResponseTime = 0.0D;
- ServerStats ss;
- for(Iterator var6 = nlb.getAllServers().iterator(); var6.hasNext(); totalResponseTime += ss.getResponseTimeAvg()) {
- Server server = (Server)var6.next();
- ss = stats.getSingleServerStat(server);
- }
- Double weightSoFar = 0.0D;
- //用于保存权重 下标对应实例在负载均衡器中的位置
- List<Double> finalWeights = new ArrayList();
- Iterator var20 = nlb.getAllServers().iterator();
- while(var20.hasNext()) {
- Server serverx = (Server)var20.next();
- //如果服务的状态不再快照汇总 则这里加载
- ServerStats ssx = stats.getSingleServerStat(serverx);
- //计算权重 平均响应时间总和-实例的响应平均响应时间+weightSoFar
- double weight = totalResponseTime - ssx.getResponseTimeAvg();
- //每次都会累加
- weightSoFar = weightSoFar + weight;
- //保存权重
- finalWeights.add(weightSoFar);
- }
- WeightedResponseTimeRule.this.setWeights(finalWeights);
- return;
- }
- } catch (Exception var16) {
- WeightedResponseTimeRule.logger.error("Error calculating server weights", var16);
- return;
- } finally {
- WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.set(false);
- }
- }
- }
- }
- }
- //负责权重计算的定时任务
- class DynamicServerWeightTask extends TimerTask {
- DynamicServerWeightTask() {
- }
- public void run() {
- WeightedResponseTimeRule.ServerWeight serverWeight = WeightedResponseTimeRule.this.new ServerWeight();
- try {
- //计算权重
- serverWeight.maintainWeights();
- } catch (Exception var3) {
- WeightedResponseTimeRule.logger.error("Error running DynamicServerWeightTask for {}", WeightedResponseTimeRule.this.name, var3);
- }
- }
- }
- }
WeightedResponseTimeRule
ClientConfigEnabledRoundRobinRule
不怎么使用 也是线性轮训 用于继承扩展
- public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule {
- RoundRobinRule roundRobinRule = new RoundRobinRule();
- @Override
- public void initWithNiwsConfig(IClientConfig clientConfig) {
- roundRobinRule = new RoundRobinRule();
- }
- @Override
- public void setLoadBalancer(ILoadBalancer lb) {
- super.setLoadBalancer(lb);
- roundRobinRule.setLoadBalancer(lb);
- }
- @Override
- public Server choose(Object key) {
- if (roundRobinRule != null) {
- return roundRobinRule.choose(key);
- } else {
- throw new IllegalArgumentException(
- "This class has not been initialized with the RoundRobinRule class");
- }
- }
- }
BestAvailableRule
选出最空闲的服务实例
- /**
- *该策略是选择 最空闲的那一个
- */
- public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule {
- private LoadBalancerStats loadBalancerStats;
- @Override
- public Server choose(Object key) {
- if (loadBalancerStats == null) {
- return super.choose(key);
- }
- //取得所有服务实例
- List<Server> serverList = getLoadBalancer().getAllServers();
- int minimalConcurrentConnections = Integer.MAX_VALUE;
- long currentTime = System.currentTimeMillis();
- Server chosen = null;
- //遍历所有服务实例
- for (Server server: serverList) {
- ServerStats serverStats = loadBalancerStats.getSingleServerStat(server);
- if (!serverStats.isCircuitBreakerTripped(currentTime)) {
- int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);
- //取得最空闲的服务
- if (concurrentConnections < minimalConcurrentConnections) {
- minimalConcurrentConnections = concurrentConnections;
- chosen = server;
- }
- }
- }
- //如果没有找到 继续延用父类的线性轮训
- if (chosen == null) {
- return super.choose(key);
- } else {
- return chosen;
- }
- }
- }
PredicateBasedRule
先过滤清单再轮训
- public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule {
- //内部使用PredicateBasedRule 实现服务的过滤
- public abstract AbstractServerPredicate getPredicate();
- @Override
- public Server choose(Object key) {
- ILoadBalancer lb = getLoadBalancer();
- /**
- * 基于Predicate实现服务的过滤
- * Predicate是Google Guava Collection的集合工具
- * 可以帮助我们让集合操作代码更为简短精练并大大增强代码的可读 性
- */
- Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
- if (server.isPresent()) {
- return server.get();
- } else {
- return null;
- }
- }
- }
- public abstract class AbstractServerPredicate implements Predicate<PredicateKey> {
- public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) {
- if (loadBalancerKey == null) {
- return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate()));
- } else {
- List<Server> results = Lists.newArrayList();
- for (Server server : servers) {
- //过滤服务
- if (this.apply(new PredicateKey(loadBalancerKey, server))) {
- results.add(server);
- }
- }
- return results;
- }
- }
- public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers) {
- List<Server> eligible = getEligibleServers(servers);
- if (eligible.size() == 0) {
- return Optional.absent();
- }
- return Optional.of(eligible.get(incrementAndGetModulo(eligible.size())));
- }
- }
AvailabilityFilteringRule
- public class AvailabilityFilteringRule extends PredicateBasedRule {
- private AbstractServerPredicate predicate;
- public AvailabilityFilteringRule() {
- super();
- //初始化 下面predicate.apply的比较策略
- predicate = CompositePredicate.withPredicate(new AvailabilityPredicate(this, null))
- .addFallbackPredicate(AbstractServerPredicate.alwaysTrue())
- .build();
- }
- @Override
- public void initWithNiwsConfig(IClientConfig clientConfig) {
- //初始化下面 predicate.apply的比较策略
- predicate = CompositePredicate.withPredicate(new AvailabilityPredicate(this, clientConfig))
- .addFallbackPredicate(AbstractServerPredicate.alwaysTrue())
- .build();
- }
- @Override
- public Server choose(Object key) {
- int count = 0;
- Server server = roundRobinRule.choose(key);
- while (count++ <= 10) {
- /**
- * 优化父类 先过滤再遍历的额外开销
- * 一边遍历 判断是否故障或者超过最大并发阀值 是否故障, 即断路器是否生效已断开。
- * 实例的并发请求数大于阙值,默认值为 232 -1, 该配置可通过参数<clientName>. <nameSpace>.ActiveConnectionsLimit 来修改。
- */
- if (predicate.apply(new PredicateKey(server))) {
- return server;
- }
- server = roundRobinRule.choose(key);
- }
- return super.choose(key);
- }
- @Override
- public AbstractServerPredicate getPredicate() {
- return predicate;
- }
- }
Spring Cloud-Ribbon负载均衡策略类IRule(五)的更多相关文章
- Spring Cloud Ribbon负载均衡配置类放在Spring boot主类同级增加Exclude过滤后报Field config in com.cloud.web.controller.RibbonConfiguration required a bean of type 'com.netflix.client.config.IClientConfig' that could not b
环境: Spring Cloud:Finchley.M8 Spring Boot:2.0.0.RELEASE 目录结构: 可以看到代码第13行的注释,我已经在@ComponentScan注解中添加了E ...
- SpringCloud微服务实战二:Spring Cloud Ribbon 负载均衡 + Spring Cloud Feign 声明式调用
1.Spring Cloud Ribbon的作用 Ribbon是Netflix开发的一个负载均衡组件,它在服务体系中起着重要作用,Pivotal将其整合成为Spring Cloud Ribbon,与其 ...
- Spring Cloud Ribbon负载均衡
目录 一.简介 二.客户端负载均衡 三.RestTemplate详解 GET请求 POST请求 PUT请求 DELETE请求 一.简介 Spring Cloud Ribbon是一个基于HTTP 和 ...
- Spring Cloud Ribbon负载均衡(快速搭建)
Spring Cloud Ribbon 是一个基于HTTP和TCP的客户端负载均衡工具,它基于Netflix Ribbon实现.通过 Spring Cloud 的封装, 可以让我们轻松地将面向服务的 ...
- springcloud(十四)、ribbon负载均衡策略应用案例
一.eureka-server服务中心项目不再创建 二.eureka-common-empdept公共组件项目不再掩饰 三.创建eureka-client-provider-empdept-one提供 ...
- SpringCloud之Ribbon负载均衡策略
Spring Cloud 微服务架构学习记录与示例 一.认识Ribbon 首先咱们需要认识下负载均衡,一般分为服务器端负载和客户端负载均衡. 服务器端负载均衡:比如Nginx.F5,请求达到服务器后由 ...
- Ribbon负载均衡策略与自定义配置new
Ribbon负载均衡策略 配置 对调用的某个服务启用某种负载策略 1)通过配置文件配置 hello: ribbon: NFLoadBalancerRuleClassName:com.netflix.l ...
- Ribbon负载均衡策略与自定义配置
Ribbon负载均衡策略 配置 对调用的某个服务启用某种负载策略 1)通过配置文件配置 hello: ribbon: NFLoadBalancerRuleClassName:com.netflix.l ...
- Spring Cloud微服务开发笔记5——Ribbon负载均衡策略规则定制
上一篇文章单独介绍了Ribbon框架的使用,及其如何实现客户端对服务访问的负载均衡,但只是单独从Ribbon框架实现,没有涉及spring cloud.本文着力介绍Ribbon的负载均衡机制,下一篇文 ...
随机推荐
- mysql20170404代码实现
CREATE DATABASE IF NOT EXISTS school; USE school; CREATE TABLE tblStudent( StuId ) NOT NULL PRIMARY ...
- B2460 [BeiJing2011]元素 线性基
这个题是对刚才线性基的一个补充,就是中间有一些小贪心,贪心就很有意思,先按权值排序,然后就瞎搞就行了. 题干: Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们 ...
- PCB 全景图技术实现
为了对3D模型理解更透,这里采用threejs(WebGL第三方库)实现,刚开始学习入门,为了能看明白基本上每行代码都注释. 如果仅仅是为了实现全景图,可以用photo-sphere-viewer.j ...
- php多个进程写文件
多进程写文件function write_file($filename, $content){ $lock = $filename . '.lck'; $write_length = 0; while ...
- es6入门6--数组拓展运算符,Array.from()基本用法
本文只是作为ES6入门第九章学习笔记,在整理知识点的同时,会加入部分个人思考与解答,若想知道更详细的介绍,还请阅读阮一峰大神的ES6入门 一.拓展运算符 ES6中新增了拓展运算(...)三个点,它的作 ...
- indeed 4.22 第一次网测
1.第一题 没有看 2. 由于数据范围很小,所以每一层需要全排列,寻找最小的花费,然后所有层加起来就是最后的结果. #include<bits/stdc++.h> #define pb p ...
- Vue2-Editor 使用
Vue-Editor底层采取的是quill.js,而quill.js采用的是html5的新属性classList,所以版本低于ie10会报错“无法获取未定义或 null 引用的属性‘confirm’” ...
- Android 解析JSON
上次讲了XML格式数据的解析方式,这次要说的是如何解析JSON数据格式,相对与XML,JSON解析数据的方式在于它的体积更小,在网络上传输可以更省流量. 这次在网上找到一个中国天气json数据的API ...
- Css小动画
html页面: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF ...
- SQL Server 置疑、可疑、正在恢复
一.出错情况 有些时候当你重启了数据库服务,会发现有些数据库变成了正在恢复.置疑.可疑等情况,这个时候DBA就会很紧张了,下面是一些在实践中得到证明的方法. 在一次重启数据库服务后,数据库显示正在恢复 ...