SPOJ CIRU
SPOJ CIRU
题意
给出n个圆,求他们覆盖的面积。
解法
自适应Simpson,但需要将圆离散化一下,以保证我们查询的是一个连续的有圆的区间。 奇怪的是我没有离散化,样例都没有过,却把题给A了
代码如下: ( 注意 :要去掉被覆盖的圆,才不会TLE)
#include <bits/stdc++.h>
using namespace std;
const int maxn=1000+5;
struct cir {
double x,y,r;
cir(double x=0.0,double y=0.0,double r=0.0):x(x),y(y),r(r){}
double dh(double nowx) {
return sqrt( r*r - (nowx - x)*(nowx - x) );
}
bool operator < (const cir&a) const {
return r<a.r;
}
}c[maxn];
struct line {
double y;
bool k;
bool operator < (const line& a) const {
return y < a.y;
}
}temp[maxn];
int n;
double F(double x) {
int num=0;double ans=0.0;
for(int i=1;i<=n;i++) {
if(x>=c[i].x-c[i].r&&x<=c[i].x+c[i].r){
double dy=c[i].dh(x);
temp[++num].y=c[i].y-dy; temp[num].k=1;
temp[++num].y=c[i].y+dy; temp[num].k=0;
}
}
sort(temp+1,temp+1+num);
int f=0;double be;
for(int i=1;i<=num;i++) {
if(temp[i].k) {
if(!(f++)) {be=temp[i].y;}
}
else if(!(--f)) ans+=temp[i].y-be;
}
return ans;
}
double simpson(double a,double b) {
double mid=(a+b)/2;
return ( F(a) + 4*F(mid) + F(b) ) * (b - a) / 6;
}
double asr(double a,double b,double e,double A) {
double mid=(a+b)/2;
double L=simpson(a,mid),R=simpson(mid,b);
if( fabs(L+R-A) <= 15*e) return L+R+(L+R-A)/15;
return asr(a,mid,e/2,L)+asr(mid,b,e/2,R);
}
double asr(double l,double r,double eps) {
return asr(l,r,eps,simpson(l,r));
}
double dis(int a,int b){
return sqrt( (c[a].x-c[b].x)*(c[a].x-c[b].x)+(c[a].y-c[b].y)*(c[a].y-c[b].y) );
}
bool cover[maxn];
int main() {
scanf("%d",&n);
double l=2e33,r=-2e33;
for(int i=1;i<=n;i++) {
scanf("%lf%lf%lf",&c[i].x,&c[i].y,&c[i].r);
l=min(l,c[i].x-c[i].r);
r=max(r,c[i].x+c[i].r);
}
sort(c+1,c+1+n);
int cnt=n;n=0;
for(int i=1;i<cnt;i++)
for(int j=i+1;j<=cnt;j++){
if(dis(i,j)+c[i].r<=c[j].r){
cover[i]=1;
break;
}
}
for(int i=1;i<=cnt;i++)
if(!cover[i])
c[++n]=c[i];
printf("%.3lf",asr(l,r,1e-4));
return 0;
}
以下是加了离散化过后的版本。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1000+5;
struct cir {
double x,y,r;
cir(double x=0.0,double y=0.0,double r=0.0):x(x),y(y),r(r){}
double dh(double nowx) {
return sqrt( r*r - (nowx - x)*(nowx - x) );
}
bool operator < (const cir&a) const {
return r<a.r;
}
}c[maxn];
struct line {
double y;
bool k;
bool operator < (const line& a) const {
return y < a.y;
}
}temp[maxn << 1],k[maxn << 1];
int n;
double F(double x) {
int num=0;double ans=0.0;
for(int i=1;i<=n;i++) {
if(x>=c[i].x-c[i].r&&x<=c[i].x+c[i].r){
double dy=c[i].dh(x);
temp[++num].y=c[i].y-dy; temp[num].k=1;
temp[++num].y=c[i].y+dy; temp[num].k=0;
}
}
sort(temp+1,temp+1+num);
int f=0;double be;
for(int i=1;i<=num;i++) {
if(temp[i].k) {
if(!(f++)) {be=temp[i].y;}
}
else if(!(--f)) ans+=temp[i].y-be;
}
return ans;
}
double simpson(double a,double b) {
double mid=(a+b)/2;
return ( F(a) + 4*F(mid) + F(b) ) * (b - a) / 6;
}
double asr(double a,double b,double e,double A) {
double mid=(a+b)/2;
double L=simpson(a,mid),R=simpson(mid,b);
if( fabs(L+R-A) <= 15*e) return L+R+(L+R-A)/15;
return asr(a,mid,e/2,L)+asr(mid,b,e/2,R);
}
double asr(double l,double r,double eps) {
return asr(l,r,eps,simpson(l,r));
}
double dis(int a,int b){
return sqrt( (c[a].x-c[b].x)*(c[a].x-c[b].x)+(c[a].y-c[b].y)*(c[a].y-c[b].y) );
}
bool cover[maxn];
int main() {
scanf("%d",&n);
for(int i=1;i<=n;i++) {
scanf("%lf%lf%lf",&c[i].x,&c[i].y,&c[i].r);
}
sort(c+1,c+1+n);
int cnt=n;n=0;
for(int i=1;i<cnt;i++)
for(int j=i+1;j<=cnt;j++){
if(dis(i,j)+c[i].r<=c[j].r){
cover[i]=1;
break;
}
}
for(int i=1;i<=cnt;i++)
if(!cover[i])
c[++n]=c[i];
cnt=0;
double ans=0.0;
for(int i=1;i<=n;i++){
k[++cnt].y=c[i].x-c[i].r; k[cnt].k=1;
k[++cnt].y=c[i].x+c[i].r; k[cnt].k=0;
}
sort(k+1,k+1+cnt);
int f=0;double be;
for(int i=1;i<=cnt;i++){
if(k[i].k) { if(!(f++)) be=k[i].y; }
else if(!(--f)) ans+=asr(be,k[i].y,1e-4);
}
printf("%.3f",ans);
return 0;
}
SPOJ CIRU的更多相关文章
- SPOJ CIRU SPOJ VCIRCLE 圆的面积并问题
SPOJ VCIRCLE SPOJ CIRU 两道题都是给出若干圆 就面积并,数据规模和精度要求不同. 求圆面积并有两种常见的方法,一种是Simpson积分,另一种是几何法. 在这里给出几何方法. P ...
- SPOJ CIRU - The area of the union of circles (圆的面积并)
CIRU - The area of the union of circles no tags You are given N circles and expected to calculate t ...
- SPOJ CIRU The area of the union of circles
You are given N circles and expected to calculate the area of the union of the circles ! Input The f ...
- SPOJ CIRU The area of the union of circles (计算几何)
题意:求 m 个圆的并的面积. 析:就是一个板子题,还有要注意圆的半径为0的情况. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024 ...
- SPOJ CIRU The area of the union of circles ——Simpson积分
[题目分析] 圆的面积并. 直接Simpson积分,(但是有计算几何的解法,留着flag). simpson积分,如果圆出现了不连续的情况,是很容易出事情的.(脑补一下) 但是没有什么办法,本来就是一 ...
- SPOJ 8073 The area of the union of circles(计算几何の圆并)(CIRU)
Description You are given N circles and expected to calculate the area of the union of the circles ! ...
- SPOJ 8073 The area of the union of circles (圆并入门)
Sphere Online Judge (SPOJ) - Problem CIRU [求圆并的若干种算法,圆并扩展算法]_AekdyCoin的空间_百度空间 参考AekdyCoin的圆并算法解释,根据 ...
- 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]
[题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
随机推荐
- P1421 小玉买文具
... 题目描述 班主任给小玉一个任务,到文具店里买尽量多的签字笔.已知一只签字笔的价格是1元9角,而班主任给小玉的钱是a元b角,小玉想知道,她最多能买多少只签字笔呢. 输入输出格式 输入格式: 输入 ...
- 设置ssh会话过期时间
客户端配置选项: 编辑配置文件 ~/.ssh/config 加入以下配置项,如不存在新建一个即可: Host * ServerAliveInterval 300 ServerAliveCountMax ...
- 【Educational Codeforces Round 48 (Rated for Div. 2) D】Vasya And The Matrix
[链接] 我是链接,点我呀:) [题意] 告诉你每一行.每一列的异或和. 让你求出一个符合要求的原矩阵. [题解] 显然应该有 a1^a2^....^an = b1^b2^....^bn 也即两边同时 ...
- 分享一些 Java 后端的个人干货
学习 Java 也有了不少时间,入 Java 后台的坑也有了一段时日.这段时间里,听过许多前辈的经验与分享,也看过许多大佬的文章和作品.找了个时间整理和总结了一下我个人到目前为止一路以来的听到看到或者 ...
- xml00
<?xml verson="1.0" encoding="ISO-8859-1"?> xml声明<note> <to>jon ...
- HTML乱码问题
第一:定义网页显示编码.如果不定义网页编码,那么我们浏览网页的时候,IE会自动识别网页编码,这就有可能会导致中文显示乱码了.所以我们做网页的时候,都会用“<meta http-equiv=”Co ...
- iOS开发-文件管理之多的是你不知道的事(一)
郝萌主倾心贡献.尊重作者的劳动成果,请勿转载. 假设文章对您有所帮助,欢迎给作者捐赠,支持郝萌主,捐赠数额任意,重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 游戏官方下 ...
- Android App 内存泄露之Thread
Thread 内存泄露 线程也是造成内存泄露的一个重要的源头.线程产生内存泄露的主要原因在于线程生命周期的不可控. 1.看一下以下是否存在问题 <span style="white-s ...
- unity3d面试题摘选(全)
======================================= 数据结构和算法非常重要.图形学也非常重要! 大的游戏公司非常看重个人基础.综合能力.也有的看重你实际工作能力,看你的De ...
- Redis常用的命令
常规命令查询地址: http://redisdoc.com/ 如下图: