CODEVS——T1519 过路费
在某个遥远的国家里,有 n个城市。编号为 1,2,3,…,n。这个国家的政府修建了m 条双向道路,每条道路连接着两个城市。政府规定从城市 S 到城市T需要收取的过路费为所经过城市之间道路长度的最大值。如:A到B长度为 2,B到C 长度为3,那么开车从 A经过 B到C 需要上交的过路费为 3。
佳佳是个做生意的人,需要经常开车从任意一个城市到另外一个城市,因此他需要频繁地上交过路费,由于忙于做生意,所以他无时间来寻找交过路费最低的行驶路线。然而, 当他交的过路费越多他的心情就变得越糟糕。 作为秘书的你,需要每次根据老板的起止城市,提供给他从开始城市到达目的城市,最少需要上交多少过路费。
第一行是两个整数 n 和m,分别表示城市的个数以及道路的条数。
接下来 m 行,每行包含三个整数 a,b,w(1≤a,b≤n,0≤w≤10^9),表示a与b之间有一条长度为 w的道路。
接着有一行为一个整数 q,表示佳佳发出的询问个数。
再接下来 q行,每一行包含两个整数 S,T(1≤S,T≤n,S≠T), 表示开始城市S 和目的城市T。
输出共q行,每行一个整数,分别表示每个询问需要上交的最少过路费用。输入数据保证所有的城市都是连通的。
4 5
1 2 10
1 3 20
1 4 100
2 4 30
3 4 10
2
1 4
4 1
20
20
对于 30%的数据,满足 1≤ n≤1000,1≤m≤10000,1≤q≤100;
对于 50%的数据,满足 1≤ n≤10000,1≤m≤10000,1≤q≤10000;
对于 100%的数据,满足 1≤ n≤10000,1≤m≤100000,1≤q≤10000;
(和货车运输很像)
先求出最小生成树(使图简化),在此树上做倍增,维护最大代价
#include <algorithm>
#include <cstring>
#include <cstdio> using namespace std; const int N(+);
const int M(+);
int n,m,q,u,v,ans;
struct Edge
{
int u,v,w;
}road[M];
bool cmp(Edge a,Edge b)
{
return a.w<b.w;
} int head[N],sumedge;
struct E
{
int v,next,w;
E(int v=,int next=,int w=):
v(v),next(next),w(w){}
}edge[N<<];
void ins(int u,int v,int w)
{
edge[++sumedge]=E(v,head[u],w);
head[u]=sumedge;
} int fa[N];
int find(int x)
{
return x==fa[x]?x:fa[x]=find(fa[x]);
}
void K()
{
int cnt=;
sort(road+,road+m+,cmp);
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=m;i++)
{
int x=road[i].u,y=road[i].v;
int fx=find(x),fy=find(y);
if(fx==fy) continue;
fa[fx]=fy;
ins(x,y,road[i].w);
ins(y,x,road[i].w);
if(++cnt==n-) return ;
}
} int dad[N],val[N],deep[N];
void DFS(int x)
{
deep[x]=deep[dad[x]]+;
for(int i=head[x];i;i=edge[i].next)
{
int v=edge[i].v;
if(dad[v]) continue;
val[v]=edge[i].w;
dad[v]=x; DFS(v);
}
}
int LCA(int x,int y)
{
int maxx=,maxn=;
if(deep[x]>deep[y]) swap(x,y);
for(;deep[y]>deep[x];y=dad[y]) maxx=max(maxx,val[y]);
for(;x!=y;x=dad[x],y=dad[y]) maxn=max(maxn,max(val[x],val[y]));
return max(maxn,maxx);
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&road[i].u,&road[i].v,&road[i].w);
K(); DFS();
scanf("%d",&q);
for(;q--;)
{
scanf("%d%d",&u,&v);
printf("%d\n",LCA(u,v));
}
return ;
}
CODEVS——T1519 过路费的更多相关文章
- codevs 1519 过路费 最小生成树+倍增
/*codevs 1519 过路费 最小生成树+倍增*/ #include<iostream> #include<cstdio> #include<cstring> ...
- codevs 1519 过路费
时间限制: 1 s 空间限制: 256000 KB 题目等级 : 大师 Master 题目描述 Description 在某个遥远的国家里,有 n个城市.编号为 1,2,3,…,n.这个国家的政府 ...
- Codevs 1519 过路费(Mst+Lca)
1519 过路费 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 大师 Master 题目描述 Description 在某个遥远的国家里,有 n个城市.编号为 1,2,3,-,n. ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- CODEVS——T2744 养鱼喂妹纸
http://codevs.cn/problem/2744/ 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Descr ...
- codevs 3289 花匠
题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1285 二叉查找树STL基本用法
C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
随机推荐
- Hadoop2.2集群安装配置-Spark集群安装部署
配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(19 ...
- HAProxy高可用配置视频教程
HAProxy提供高可用性.负载均衡等,它是免费.快速并且可靠的一种解决方案.HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保持或七层处理.HAProxy运行在当前的硬件上, ...
- vue中剖析中的一些方法
1 判断属性 71 -81 var hasOwnProperty = Object.prototype.hasOwnProperty; /** * Check whether the object h ...
- 使用iframe在手机中嵌套页面
使用iframe嵌套网页 <iframe id="show-iframes" frameborder="0" name="showHere&qu ...
- 反斜杠处理函数addslashes()和stripslashes()
addslashes():对输入字符串中的某些预定义字符前添加反斜杠,这样处理是为了数据库查询语句等的需要.这些预定义字符是:单引号 (') ,双引号 (") ,反斜杠 (\) ,NULL. ...
- VirtualBox内刚刚安装完CentOS6.9和7系统,无法调整屏幕的分辨率,也无法设置共享文件夹。解决的方法就是安装VirtualBox客户端增强包。
VirtualBox内刚刚安装完CentOS6.9和7系统,无法调整屏幕的分辨率,也无法设置共享文件夹.解决的方法就是安装VirtualBox客户端增强包. 1.若直接安装客户端增强包会得到如下提示: ...
- Reference Counting GC (Part two :Partial Mark & Sweep)
目录 部分标记清除算法 前提 dec_ref_cnt()函数 new_obj()函数 scan_hatch_queue()函数 paint_gray()函数 scan_gray()函数 collect ...
- 今日SGU 5.23
SGU 223 题意:给你n*n的矩形,放k个国王,每个国王不能放在别的国王的8连边上,问你有多少种方法 收获:状态DP,因为每行的放置只会影响下一行,然我们就枚举每行的状态和对应的下一行的状态,当两 ...
- Android 简述touch事件中的MotionEvent
有关touchEvent的事件里都有一个 MotionEvent 參数,以下来简介一下它的属性的一些含义和使用的方法 通常单指操作时,一般例如以下: switch (event.getAction() ...
- 整理一些PHP开发安全问题
整理一些PHP开发安全问题 php给了开发人员极大的灵活性,可是这也为安全问题带来了潜在的隐患.最近须要总结一下以往的问题,在这里借翻译一篇文章同一时候加上自己开发的一些感触总结一下. 简单介绍 当开 ...