多线程可以共享全局变量,多进程不能。多线程中,所有子线程的进程号相同;多进程中,不同的子进程进程号不同。

#!/usr/bin/python
# -*- coding:utf-8 -*-
import os
import threading
import multiprocessing
count_thread = 0
count_process = 0 # worker function
def worker1(sign, lock):
global count_thread
lock.acquire()
count_thread += 1
print(sign, os.getpid())
lock.release() def worker2(sign, lock):
global count_process
lock.acquire()
count_process += 1
print(sign, os.getpid())
lock.release()
# Main
print('Main:',os.getpid()) # Multi-thread
record = []
lock = threading.Lock()
for i in range(5):
thread = threading.Thread(target=worker1,args=('thread',lock))
thread.start()
record.append(thread) for thread in record:
thread.join() # Multi-process
record = []
lock = multiprocessing.Lock()
for i in range(5):
process = multiprocessing.Process(target=worker2,args=('process',lock))
process.start()
record.append(process) for process in record:
process.join() print count_thread
print count_process

运行结果

('Main:', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('thread', 3142)
('process', 3148)
('process', 3149)
('process', 3150)
('process', 3151)
('process', 3152)
5
0

应该尽量避免多进程共享资源。多进程共享资源必然会带来进程间相互竞争。而这种竞争又会造成race condition,我们的结果有可能被竞争的不确定性所影响。但如果需要,我们依然可以通过共享内存和Manager对象这么做。

1) 共享内存

用Python实现的例子:

import multiprocessing

def f(n, a):
n.value = 3.14
a[0] = 5 num = multiprocessing.Value('d', 0.0)
arr = multiprocessing.Array('i', range(10)) p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join() print num.value
print arr[:]

这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。

2)Manager

Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。下面的例子中,我们对Manager的使用类似于shared memory,但可以共享更丰富的对象类型。

import multiprocessing

def f(x, arr, l):
x.value = 3.14
arr[0] = 5
l.append('Hello') server = multiprocessing.Manager()
x = server.Value('d', 0.0)
arr = server.Array('i', range(10))
l = server.list() proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join() print(x.value)
print(arr)
print(l)

Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。

参考资料:

http://blog.csdn.net/zhaozhi406/article/details/8137670

http://www.xuebuyuan.com/1968817.html

  

  

  

python 多线程和多进程的区别 mutiprocessing theading的更多相关文章

  1. python多线程与多进程及其区别

    个人一直觉得对学习任何知识而言,概念是相当重要的.掌握了概念和原理,细节可以留给实践去推敲.掌握的关键在于理解,通过具体的实例和实际操作来感性的体会概念和原理可以起到很好的效果.本文通过一些具体的例子 ...

  2. python面试题之python多线程与多进程的区别

    多线程可以共享全局变量,多进程不能 多线程中,所有子线程的进程号相同,多进程中,不同的子进程进程号不同 线程共享内存空间:进程的内存是独立的 同一个进程的线程之间可以直接交流:两个进程想通信,必须通过 ...

  3. python多线程与多进程的区别

    在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie).所以,有必要对每个Process对象调用join()方法 (实际上等同于wait).对于多 ...

  4. Python 多线程、多进程 (二)之 多线程、同步、通信

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  5. Python多线程和多进程谁更快?

    python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很 ...

  6. python多线程与多进程--存活主机ping扫描以及爬取股票价格

    python多线程与多进程 多线程: 案例:扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活) 普通版本: #扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活)im ...

  7. Python 多线程、多进程 (三)之 线程进程对比、多进程

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.多线程与多进 ...

  8. Python 多线程、多进程 (一)之 源码执行流程、GIL

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  9. 基于Windows平台的Python多线程及多进程学习小结

    python多线程及多进程对于不同平台有不同的工具(platform-specific tools),如os.fork仅在Unix上可用,而windows不可用,该文仅针对windows平台可用的工具 ...

随机推荐

  1. spring配置datasource三种方式

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp34 spring配置datasource三种方式 1.使用org.spri ...

  2. java常见面试题(一)

    一.Spring面试的问题 1.spring的事务认识 事务注解方式: @Transactional,当标于类前时,该类的所有public方法都进行事物处理. 事务的传播行为: @Transactio ...

  3. c# List集合中First、Last、Single方法使用

    操作符 如果源序列是空的 源序列只包含一个元素 源序列包含多个元素 First 抛异常 返回该元素 返回第一个元素 FirstOrDefault 返回default(TSource) 返回该元素 返回 ...

  4. 波涛1202wm8833 lihomme/历织造 2013秋装全新男装夹克 整身年龄外套潮流立领男士休闲外套薄_9才号

    波涛1202wm8833 lihomme/历织造 2013秋装全新男装夹克 整身年龄外套潮流立领男士休闲外套薄_9才号 波涛1202wm8833lihomme/历织造2013秋装全新男装夹克整身年龄外 ...

  5. RMA退货流程解决方案

    RMA退货流程解决方案 1.概述 在高科技制造业中有效地对产品退货进行控制和跟踪有很大的意义.对于一个产品成本从几元到几十万元的工业,管理退货流程的能力至关重要,缺乏跟踪和控制有可能导致上百万元的损失 ...

  6. 学会Git

    学会Git   目录 一.版本控制概要 1.1.什么是版本控制 1.2.常用术语 1.3.常见的版本控制器 1.4.版本控制分类 1.4.1.本地版本控制 1.4.2.集中版本控制 1.4.3.分布式 ...

  7. 2017春季 JMU 1414软工助教 链接汇总

    助教自我介绍 学生博客链接和coding链接 [1414软工助教]团队博客汇总 助教总结 评分 个人作业1:四则运算控制台 结对项目1:GUI 个人作业2:案例分析 结对项目2:单元测试 团队作业1: ...

  8. 201521123066《Java程序设计》第八周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1.List中指定元素的删除(题目4-1) 1.1 实验总结** 用cont ...

  9. 201521123114 《Java程序设计》第2周学习总结

    #1. 本周学习总结 1. 学会了使用码云管理代码,使用eclipse关联jdk源代码: 2. 学习了包管理机制,包的作用:主要是管理java文件,解决同名文件冲突; 3. ArrayList可以处理 ...

  10. 201521145048《Java程序设计管理》第一周学习总结

    1. 本周学习总结 学习并了解Java的发展与历史 在网上视频中学习Java 了解并区分JVM JRE JDK 将java与已学语言做比较,发现相同处 2. 书面作业 Q1.为什么java程序可以跨平 ...