Spark术语
1.resilient distributed dataset (RDD)
The core programming abstraction in Spark, consisting of a fault-tolerant collection of elements that can be operated on in parallel.
2.partition
A subset of the elements in an RDD. Partitions define the unit of parallelism;
Spark processes elements within a partition in sequence and multiple partitions in parallel.
When Spark reads a file from HDFS, it creates a single partition for a single input split.
It returns a single partition for a single block of HDFS (but the split between partitions is on line split, not the block split), unless you have a compressed text file.
In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).
3.application
A job, sequence of jobs, or a long-running service issuing new commands as needed or an interactive exploration session.
4.application JAR
A JAR containing a Spark application. In some cases you can use an "Uber" JAR containing your application along with its dependencies.
The JAR should never include Hadoop or Spark libraries, however, these will be added at runtime.
5.cluster manager
An external service for acquiring resources on the cluster: Spark Standalone or YARN.
6.job
A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action.
7.task
A unit of work on a partition of a distributed dataset. Also referred to as a stage.
8.driver
Process that represents the application session.
The driver is responsible for converting the application to a directed graph of individual steps to execute on the cluster.
There is one driver per application.
9.executor
A process that serves a Spark application.
An executor runs multiple tasks over its lifetime, and multiple tasks concurrently.
A host may have several Spark executors and there are many hosts running Spark executors for each application.
10.deploy mode
Identifies where the driver process runs.
In client mode, the submitter launches the driver outside of the cluster.
In cluster mode, the framework launches the driver inside the cluster.
Client mode is simpler, but cluster mode allows you to log out after starting a Spark application without terminating the application.
12.Spark Standalone
A model of running Spark applications in which a Master daemon coordinates the efforts of Worker daemons, which run the executors.
13.Spark on YARN
A model of running Spark applications in which the YARN ResourceManager performs the functions of the Spark Master.
The functions of the Workers are performed by the YARN NodeManagers, which run the executors.
14.ApplicationMaster
A YARN role responsible for negotiating resource requests made by the driver and finding a set of containers in which to run the Spark application.
There is one ApplicationMaster per application.
Spark术语的更多相关文章
- Spark入门实战系列--1.Spark及其生态圈简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...
- 【Todo】【读书笔记】大数据Spark企业级实战版 & Scala学习
下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的S ...
- RDD机制实现模型Spark初识
Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性. 在Spark中,通过RDD( ...
- 【DataMagic】如何在万亿级别规模的数据量上使用Spark
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...
- spark学习笔记_1
简单的讲,Apache Spark是一个快速且通用的集群计算系统. Apache Spark 历史: 2009年由加州伯克利大学的AMP实验室开发,并在2010年开源,13年时成长为Apache旗下大 ...
- 通过分区(Partitioning)提高Spark的运行性能
在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何 ...
- Spark之 spark简介、生态圈详解
来源:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介Spark是加州大学伯克利分校AMP实验室(Algorithm ...
- spark 图文详解:资源调度和任务调度
讲说spark的资源调度和任务调度,基本的spark术语,这里不再多说,懂的人都懂了... 按照数字顺序阅读,逐渐深入理解:以下所有截图均为个人上传,不知道为什么总是显示别人的QQ,好尴尬,无所谓啦, ...
- 如何在万亿级别规模的数据量上使用Spark
一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...
随机推荐
- 对于php-fpm和cgi,还有并发响应的理解
参考链接: - https://www.zhihu.com/question/64414628 php fpm 进程数和并发数是什么关系? - https://segmentfault.com/q ...
- Java8 ArrayList源码分析
java.util.ArrayList是最常用的工具类之一, 它是一个线程不安全的动态数组. 本文将对JDK 1.8.0中ArrayList实现源码进行简要分析. ArrayList底层采用Objec ...
- prometheus client_golang使用
序言 Prometheus是一个开源的监控系统,拥有许多Advanced Feature,他会定期用HTTP协议来pull所监控系统状态进行数据收集,在加上timestamp等数据组织成time se ...
- TensorFlow简易学习[2]:实现线性回归
上篇介绍了TensorFlow基本概念和基本操作,本文将利用TensorFlow举例实现线性回归模型过程. 线性回归算法 线性回归算法是机器学习中典型监督学习算法,不同于分类算法,线性回归的输出是整个 ...
- STM32F030如何正确配置IO口的复用功能
本文所使用的单片机型号为STM32F030C8T6. 在030系列的单片机中,PA2引脚除了作为普通的IO引脚用作输入输出功能以外,还可以作为内部外设串口1,串口2,定时器15通道1这三个外设的功能引 ...
- springboot-mybatis 批量insert
springboot mybatis 批量insert 操作 直接上代码: 1.首先要在pom.xml中导入包: 略...... 2.springboot mybatis配置: package com ...
- C++ sqlite3解决中文排序问题
导言:sqlite3默认的编码方式为UTF8编码,而在UTF8编码下,中文不是按照拼音顺序编码的,所以想解决中文排序问题,必须自定义排序规则,将UTF8编码转换成GB2312编码(GB2312编码中文 ...
- 九、Hadoop学习笔记————Hive简介
G级别或者T级别都只能用hadoop
- deepin 常用设置
1 不开特效和动画,开启透明无黑边 #!/bin/bash #开启 metacity 窗管合成,取代正在运行的窗管 deepin-metacity --composite --replace #关闭 ...
- Docker 使用教程
概括 Docker与传统虚拟机的区别 与传统虚拟机的区别 Docker的安装 的安装 Docker daemon , client , containerd 镜像与容器操作 容器运 ...