Spark术语
1.resilient distributed dataset (RDD)
The core programming abstraction in Spark, consisting of a fault-tolerant collection of elements that can be operated on in parallel.
2.partition
A subset of the elements in an RDD. Partitions define the unit of parallelism;
Spark processes elements within a partition in sequence and multiple partitions in parallel.
When Spark reads a file from HDFS, it creates a single partition for a single input split.
It returns a single partition for a single block of HDFS (but the split between partitions is on line split, not the block split), unless you have a compressed text file.
In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).
3.application
A job, sequence of jobs, or a long-running service issuing new commands as needed or an interactive exploration session.
4.application JAR
A JAR containing a Spark application. In some cases you can use an "Uber" JAR containing your application along with its dependencies.
The JAR should never include Hadoop or Spark libraries, however, these will be added at runtime.
5.cluster manager
An external service for acquiring resources on the cluster: Spark Standalone or YARN.
6.job
A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action.
7.task
A unit of work on a partition of a distributed dataset. Also referred to as a stage.
8.driver
Process that represents the application session.
The driver is responsible for converting the application to a directed graph of individual steps to execute on the cluster.
There is one driver per application.
9.executor
A process that serves a Spark application.
An executor runs multiple tasks over its lifetime, and multiple tasks concurrently.
A host may have several Spark executors and there are many hosts running Spark executors for each application.
10.deploy mode
Identifies where the driver process runs.
In client mode, the submitter launches the driver outside of the cluster.
In cluster mode, the framework launches the driver inside the cluster.
Client mode is simpler, but cluster mode allows you to log out after starting a Spark application without terminating the application.
12.Spark Standalone
A model of running Spark applications in which a Master daemon coordinates the efforts of Worker daemons, which run the executors.
13.Spark on YARN
A model of running Spark applications in which the YARN ResourceManager performs the functions of the Spark Master.
The functions of the Workers are performed by the YARN NodeManagers, which run the executors.
14.ApplicationMaster
A YARN role responsible for negotiating resource requests made by the driver and finding a set of containers in which to run the Spark application.
There is one ApplicationMaster per application.
Spark术语的更多相关文章
- Spark入门实战系列--1.Spark及其生态圈简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...
- 【Todo】【读书笔记】大数据Spark企业级实战版 & Scala学习
下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的S ...
- RDD机制实现模型Spark初识
Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性. 在Spark中,通过RDD( ...
- 【DataMagic】如何在万亿级别规模的数据量上使用Spark
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...
- spark学习笔记_1
简单的讲,Apache Spark是一个快速且通用的集群计算系统. Apache Spark 历史: 2009年由加州伯克利大学的AMP实验室开发,并在2010年开源,13年时成长为Apache旗下大 ...
- 通过分区(Partitioning)提高Spark的运行性能
在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何 ...
- Spark之 spark简介、生态圈详解
来源:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介Spark是加州大学伯克利分校AMP实验室(Algorithm ...
- spark 图文详解:资源调度和任务调度
讲说spark的资源调度和任务调度,基本的spark术语,这里不再多说,懂的人都懂了... 按照数字顺序阅读,逐渐深入理解:以下所有截图均为个人上传,不知道为什么总是显示别人的QQ,好尴尬,无所谓啦, ...
- 如何在万亿级别规模的数据量上使用Spark
一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...
随机推荐
- [转载] 运维角度浅谈:MySQL数据库优化
一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善. 作者:zhenliang8,本文转自51CTO博客,http://lizhenliang. ...
- Python之mysql数据库更新表数据接口实现
昨天,因为项目需求要添加表的更新接口,来存储预测模型训练的数据. 先码为敬~~~~~~~ # -*- coding: utf-8 -*- import pymysql import settings ...
- Python之print字典
在python 下面一个包含中文字符串的列表(list)或字典,直接使用print会出现以下的结果: >>> adict={'a':'中文'} >>> print ...
- 通过 Visual Studio 的“代码度量值”来改进代码质量
1 软件度量值指标 1.1 可维护性指数 表示源代码的可维护性,数值越高可维护性越好.该值介于0到100之间.绿色评级在20到100之间,表明该代码具有高度的可维护性:黄色评级在10到19之间,表示该 ...
- 使用Identity Server 4建立Authorization Server (6) - js(angular5) 客户端
预备知识: http://www.cnblogs.com/cgzl/p/7746496.html 第一部分: http://www.cnblogs.com/cgzl/p/7780559.html 第二 ...
- 优雅的使用Chrome调试Node程序
前言 我不知道大家用什么来调试node程序.可能有的人用node-inspect,但是这货很久没更新了,而且一堆的bug用起来很不爽:可能有的人用命令行来,但是这样操作不够灵活:还有人只用consol ...
- C#学习笔记——数据库篇(1)
C#的数据连接分同样分三步走 .连接语句 string str_conn = "sever = localhost;database = smaple;usid = sa;pwd = 123 ...
- Heap Sorting 总结 (C++)
各位读者,大家好. 因为算法和数据结构相关的知识都是在国外学的,所以有些词汇翻译的可能不准确,然后一些源代码的注释可能是英文的,如有给大家带来什么不方便,请见谅.今天我想写一下Heap相关的知识,从基 ...
- nginx使用replace-filter-nginx-module实现内容替换
有时候我们想对响应(例如PHP接口)返回的内容做些字符串,虽然可以使用各语言代码相关方法(例如PHP的str_replace)进行替换,但是在nginx层面替换是更方便的,无需修改代码. 约定:本文源 ...
- springmvc中对日期格式化的处理
@DateTimeFormat(pattern="yyyy-MM-dd") 返回的时候java.util.Date pattern="yyyy-MM-dd"必须 ...