题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:

2 1
1 1
1 1
输出样例#1:

1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂


如题,矩阵快速幂。

已知,矩阵乘法:

第一个矩阵:

5 6 7

8 9 4

第二个矩阵:

2 3 7

2 4 8

8 3 6

相乘得:

5*2+6*2+7*8  5*3+6*4+7*3  5*7+6*8+7*6

8*2+9*2+4*8  8*3+9*4+4*3  8*7+9*8+4*6

即:

78  60  125

36  72  152

再利用快速幂可得答案。

最后附上经我们喻队(

PIPIBoss

)指点的代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define ll long long
using namespace std;
ll read()
{
ll x=,y=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
y=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*y;
}
int n;
ll k;
struct ju
{
ll a[][];
inline ju operator *(const ju &b)const//inline用来定义内联函数,即在类中用的函数,可以加快速度。
{                      //该函数的作用是来重载*号运算符。
ju tmp;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
tmp.a[i][j]=;
for(int k=; k<=n; k++)
{
tmp.a[i][j]+=a[i][k]*b.a[k][j];
tmp.a[i][j]%=;
}
}
return tmp;
}
}ans;
ju pow(ju a,ll k)
{
ju tmp=a;
k--;
while(k)
{
if(k&)
tmp=tmp*a;
a=a*a;
k>>=;
}
return tmp;
}
int main()
{
scanf("%d%lld",&n,&k);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
ans.a[i][j]=read();
ans=pow(ans,k);
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
printf("%lld ",ans.a[i][j]);
putchar('\n');
}
return ;
} // FOR C.H.

最后的最后,别忘了加上头文件,我一开始就是因为没加头文件错了几次。

P3390 【模板】矩阵快速幂的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  2. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  3. 【洛谷P3390】矩阵快速幂

    矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...

  4. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  5. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  6. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  7. Luogu P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  8. 矩阵快速幂模板(pascal)

    洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...

  9. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

随机推荐

  1. Linux与mv命令结合,移动文件至指定目录

    转自:http://blog.csdn.net/hardwin/article/details/7711635 把当前目录下面的file(不包括目录),移动到/opt/shell find  .  - ...

  2. CodeForces 544C (Writing Code)(dp,完全背包)

    题意:有n个程序员,要协作写完m行代码,最多出现b个bug,第i个程序员每写一行代码就会产生a[i]个bug,现在问,这n个人合作来写完这m行代码,有几种方案使得出的bug总数不超过b(题中要求总方案 ...

  3. Web缓存相关知识整理

    一.前言  工作上遇到一个这样的需求,一个H5页面在APP端,如果勾选已读状态,则下次打开该链接,会跳过此页面.用到了HTML5 的本地存储 API 中的 localStorage作为解决方案,回顾了 ...

  4. 3D图片变换

    1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...

  5. iOSNsPredicate Appium 定位元素

    Appium使用WebDriverAgent之后,新增了一种定位方法iOSNsPredicate,总结了一下使用方法: MobileElement photo = driver.findElement ...

  6. 使用Eclipse进行Javaweb项目开发时,如何设置外置浏览器Chrome

    使用Eclipse开发Javaweb项目时,在Eclipse中显示页面不是很好,那么如何让它自动打开外置浏览器呢?操作如下

  7. Python中Swithch Case语法实现

    而python本身没有switch语句,解决方法有以下3种:A.使用dictionaryvalues = { value1: do_some_stuff1, value2: do_some_stuff ...

  8. GPU编程-Thread Hierarchy(3)

    1. 如果处理的数据是二维的或者三维的,应该怎么办呢? 针对的,我们可以按照二维或者三维的方式,组织线程.老规矩,先代码.后解释 // Kernel definition __global__ voi ...

  9. Chrome 开发者工具断点调试(视频教程)

    很多人不了解 Chrome Dev Tools (开发者工具)的使用方法和技巧. 其中很多技能,无论是前端开发从业者,还是普通用户,了解一些还是对日常很有帮助的. 本猿定期录制.甚至根据您的需求来订制 ...

  10. redis五种数据类型

    string Redis的字符串和其他编程语言或者其他键值存储提供的字符串非常相似. 命令 行为 GET 获取存储在给定键中的值 SET 设置存储在给定键中的值 DEL 删除存储在给定中的值(这个命令 ...