题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:

2 1
1 1
1 1
输出样例#1:

1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂


如题,矩阵快速幂。

已知,矩阵乘法:

第一个矩阵:

5 6 7

8 9 4

第二个矩阵:

2 3 7

2 4 8

8 3 6

相乘得:

5*2+6*2+7*8  5*3+6*4+7*3  5*7+6*8+7*6

8*2+9*2+4*8  8*3+9*4+4*3  8*7+9*8+4*6

即:

78  60  125

36  72  152

再利用快速幂可得答案。

最后附上经我们喻队(

PIPIBoss

)指点的代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define ll long long
using namespace std;
ll read()
{
ll x=,y=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
y=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*y;
}
int n;
ll k;
struct ju
{
ll a[][];
inline ju operator *(const ju &b)const//inline用来定义内联函数,即在类中用的函数,可以加快速度。
{                      //该函数的作用是来重载*号运算符。
ju tmp;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
tmp.a[i][j]=;
for(int k=; k<=n; k++)
{
tmp.a[i][j]+=a[i][k]*b.a[k][j];
tmp.a[i][j]%=;
}
}
return tmp;
}
}ans;
ju pow(ju a,ll k)
{
ju tmp=a;
k--;
while(k)
{
if(k&)
tmp=tmp*a;
a=a*a;
k>>=;
}
return tmp;
}
int main()
{
scanf("%d%lld",&n,&k);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
ans.a[i][j]=read();
ans=pow(ans,k);
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
printf("%lld ",ans.a[i][j]);
putchar('\n');
}
return ;
} // FOR C.H.

最后的最后,别忘了加上头文件,我一开始就是因为没加头文件错了几次。

P3390 【模板】矩阵快速幂的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  2. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  3. 【洛谷P3390】矩阵快速幂

    矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...

  4. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  5. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  6. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  7. Luogu P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  8. 矩阵快速幂模板(pascal)

    洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...

  9. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

随机推荐

  1. 用sftp上传文件至linux服务器

    1.项目环境 框架:springmvc    项目管理工具:maven 2.必须使用的jar com.jcraft jsch 0.1.27 test 3.新建一个FileUpDown工具类,在类中添加 ...

  2. CAP原理、一致性模型、BASE理论和ACID特性

    CAP原理 在理论计算机科学中,CAP定理(CAP theorem),又被称作布鲁尔定理(Brewer's theorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点: 一致性(Con ...

  3. iphone手机中对于html和css的一些特殊处理

    1.iphone safari iso系统不兼容:hover的解决办法: 方法一: a:hover设置的样式在IOS系统的浏览器内显示不出来,看来是IOS系统的移动设备中,需要在按钮元素或者是body ...

  4. Eclipse设置文字大小

    1,选择窗口,preference 2,general

  5. 关于ASP.NET WebForm与ASP.NET MVC的比较

      WebForm的理解 1. WebForm概念 ASP.NETWebform提供了一个类似于Winform的事件响应GUI模型(event-drivenGUI),隐藏了HTTP.HTML.Java ...

  6. datagrid 添加、修改、删除(转载)

    原链接:JQueryEasyUI学习笔记(十)datagrid 添加.修改.删除 基于datagrid框架的删除.添加与修改: 主要是批量删除,双击表单修改.选中行修改,增加行修改,再有就是扩展edi ...

  7. nginx四层负载均衡配置

    nginx四层负载均衡配置代理Mysql集群 环境如下: ip 192.168.6.203 Nginx ip 192.168.6.*(多台) Mysql 步骤一 查看Nginx是否安装stream模块 ...

  8. scrapy调试时出现 ImportError: No module named win32api

    windows下利用scrapy(python2.7)写爬虫,运行 scrapy crawl dmoz 命令时提示:exceptions.ImportError: No module named wi ...

  9. win10 搜索不能使用解决方法

    重装系统之后遇到一个问题,在搜索栏不能搜索到应用程序,Windows 10 Search can't find ANY applications. Even calculator - Super Us ...

  10. read命令读取用户输入

    read命令用于从终端或文件中读取用户输入,它读取整行输入,如果没有指定名称,读取的行被赋值给内部变量REPLY.read命令常用选项:-a,-p,-s,-t,-n 1.REPLY变量 $readhe ...