An impassioned circulation of affection
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output

Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it!

Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has n pieces numbered from 1 to n from left to right, and the i-th piece has a colour si, denoted by a lowercase English letter. Nadeko will repaint at most m of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour c — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland.

For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3.

But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has q plans on this, each of which can be expressed as a pair of an integer mi and a lowercase letter ci, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.

Input

The first line of input contains a positive integer n (1 ≤ n ≤ 1 500) — the length of the garland.

The second line contains n lowercase English letters s1s2... sn as a string — the initial colours of paper pieces on the garland.

The third line contains a positive integer q (1 ≤ q ≤ 200 000) — the number of plans Nadeko has.

The next q lines describe one plan each: the i-th among them contains an integer mi (1 ≤ mi ≤ n) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter ci — Koyomi's possible favourite colour.

Output

Output q lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.

Examples
input
6
koyomi
3
1 o
4 o
4 m
output
3
6
5
input
15
yamatonadeshiko
10
1 a
2 a
3 a
4 a
5 a
1 b
2 b
3 b
4 b
5 b
output
3
4
5
7
8
1
2
3
4
5
input
10
aaaaaaaaaa
2
10 b
10 z
output
10
10
Note

In the first sample, there are three plans:

In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3is the best achievable;

In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6;

In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.

题解:

codeforces上的分组是暴力DP,实际上是区间DP,因为没什么技巧,所以就暴力了。

定义f[i][j]表示字母i修改j个所能够达到的最长长度。

第一层循环枚举字母,第二层循环枚举期间长度,第三层循环枚举区间的起始位置。

每次统计出当前区间内当前字母的个数cnt,lenth表示区间长度,f[i][length-cnt]=max(f[i][length-cnt],length);

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<stack>
#include<algorithm>
#include<ctime>
#include<vector>
using namespace std;
int n,m,f[][];
char s[];
int main()
{
scanf("%d",&n);
scanf("%s",s);
for(char i='a';i<='z';i++)
{
int ff=i-'a';
for(int j=;j<=n;j++)
{ int cnt=;
for(int k=;k<=j-;k++)
if(s[k]==i)cnt++;
for(int k=;k<=n-j;k++)
{
f[ff][j-cnt]=max(f[ff][j-cnt],j);
if(s[k]-'a'==ff)cnt--;
if(k+j<=n-&&s[k+j]-'a'==ff)cnt++;
}
}
}
scanf("%d",&m);
char ch[];
for(int i=;i<;i++)
{
for(int j=;j<=n;j++)
{
f[i][j]=max(f[i][j],f[i][j-]);
}
}
for(int i=;i<=m;i++)
{
int a;
scanf("%d%s",&a,&ch);
printf("%d\n",f[ch[]-'a'][a]);
}
return ;
}

An impassioned circulation of affection的更多相关文章

  1. 【Codeforces Round 418】An impassioned circulation of affection DP

                                                            C. An impassioned circulation of affection   ...

  2. codeforces 814 C. An impassioned circulation of affection 【尺取法 or DP】

    //yy:因为这题多组数据,DP预处理存储状态比每次尺取快多了,但是我更喜欢这个尺取的思想. 题目链接:codeforces 814 C. An impassioned circulation of ...

  3. Codeforces Round #418 (Div. 2) C. An impassioned circulation of affection

    C. An impassioned circulation of affection time limit per test 2 seconds memory limit per test 256 m ...

  4. An impassioned circulation of affection(尺取+预处理)

    题目链接:http://codeforces.com/contest/814/problem/C 题目: 题意:给你一个长度为n的字符串,m次查询,每次查询:最多进行k步修改,求字符c(要输入的字符) ...

  5. C. An impassioned circulation of affection DP

    http://codeforces.com/contest/814/problem/C 12ooyomioomioo21 o2 o 这题我是用dp解的,不过好像很慢,比赛的时候算了下不会mle,就没滚 ...

  6. 【尺取或dp】codeforces C. An impassioned circulation of affection

    http://codeforces.com/contest/814/problem/C [题意] 给定一个长度为n的字符串s,一共有q个查询,每个查询给出一个数字m和一个字符ch,你的操作是可以改变字 ...

  7. CF814C An impassioned circulation of affection

    思路: 对于题目中的一个查询(m, c),枚举子区间[l, r](0 <= l <= r < n),若该区间满足其中的非c字符个数x不超过m,则可以将其合法转换为一个长度为r-l+1 ...

  8. codeforces 814 C. An impassioned circulation of affection(二分+思维)

    题目链接:http://codeforces.com/contest/814/problem/C 题意:给出一串字符串然后q个询问,问替换掉将m个字符替换为字符c,能得到的最长的连续的字符c是多长 题 ...

  9. Codeforces 814C - An impassioned circulation of affection

    原题链接:http://codeforces.com/contest/814/problem/C 题意:有长度为n的一个字符串,q个询问,每个询问由数字m和字符c组成,问最多在字符串中替换m个字符,使 ...

随机推荐

  1. hdu1540线段树

    https://vjudge.net/contest/66989#problem/I #include<iostream> #include<cstdio> #include& ...

  2. 关于vector push_back()与其他方式读取数据的效率对比

    引言: 在读取大量数据(数组)时,使用vector会尽量保证不会炸空间(MLE),但是相比于scanf的读取方式会慢上不少.但到底效率相差有多大,我们将通过对比测试得到结果. 测试数据:利用srand ...

  3. mysql5.6源码自动安装脚本

    将脚本与源码安装包放在同一目录下,执行脚本即可(执行脚本会使用yum安装依赖包) 安装完成之后,既可以使用mysql -uroot -p登录   脚本内容如下: [root@mysql src]# c ...

  4. 【Java SE】利用Java的for循环加random制作小学试卷

    前期介绍:很多同学以为学习一门编程语言,一定要学到很高深的时候才可以做项目,其实不然,很多时候我们不需要学到面向对象的思想,就可以从事一些小项目的开发,来增加自己对开发的热情,比如现在我就可以利用Ja ...

  5. 《大型网站系统与JAVA中间件实践学习笔记》-1

    第一章:分布式系统介绍 定义:分布式系统是一组分布在网络上通过消息传递进行协作的计算机组成系统. 分布式系统的意义 升级单机处理能力的性价比越来越低 单机处理器能力存在瓶颈 处于稳定性和可用性考虑 阿 ...

  6. Oracle数据库悲观锁与乐观锁详解

    数据的锁定分为两种方法,第一种叫做悲观锁,第二种叫做乐观锁.什么叫悲观锁呢,悲观锁顾名思义,就是对数据的冲突采取一种悲观的态度,也就是说假设数据肯定会冲突,所以在数据开始读取的时候就把数据锁定住.而乐 ...

  7. Collection<E>、Iterable<T>和Iterator<E>接口

    Collection接口 public interface Collection<E>extends Iterable<E> Collection接口主要包含以下方法: Ite ...

  8. nginx 日志分割(简单、全面)

    Nginx 日志分割 因业务需要做了简单的Nginx 日志分割, 第1章 详细配置如下. #建议在mkdir  /home/shell  -p 专门写shell 脚本位置 root@localhost ...

  9. 数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

    树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n ...

  10. 基本DOS命令之 netstat 命令详解

     netstat 命令(查看端口) netstat 命令用于显示与 IP .TCP .UDP 和 ICMP 协议相关的统计数据,一般用于检验本机各端口的网络连接情况,可以使用 netstat 命令查看 ...