package practice;

public class TestMain {
public static void main(String[] args) {
int[] ao = {50,18,97,63,56,3,71,85,54,34,9,62,45,94,66,65,7,19,22,86};
Integer[] a = new Integer[20];
for (int i = 0; i < a.length; i++) {
a[i] = new Integer(ao[i]);
}
BinarySortTree<Integer, String> tree = new BinarySortTree<Integer, String>();
for (int i = 0; i < a.length; i++) {
tree.put(a[i], a[i].toString());
}
/*tree.delete(3);
System.out.println("min = "+tree.min()+" max = "+tree.max());
tree.delete(97);
System.out.println("min = "+tree.min()+" max = "+tree.max());
tree.delete(19);
tree.delete(18);
tree.delete(85);
System.out.println();
tree.delete(99);*/ }
}
/*
* 二叉查找树及其操作的递归实现
* 二叉查找树:左节点比根节点小,左节点比根节点大。
*/
class BinarySortTree<K extends Comparable<K>, V>{ Node root;
/*
* Node结点类
*/
class Node{
private Node left, right; //左右子树
private K key;
private V value;
private int N; //节点所在树的子节点数(包括自己) private Node(K key, V value) {
this.key = key;
this.value = value;
this.N = 1;
} public K getKey() {
return key;
}
}
/*
* 插入新节点
* O(lgn)
*/
public void put(K key, V value) {
root = put(key, value, root);
} private Node put(K key, V value, Node node) {
if (node == null) { return new Node(key, value);} if (compare(key, node.key) == 0) { node.value = value;} //如果key相等则更新值
else if (compare(key, node.key) < 0) { node.left = put(key, value, node.left);} //进入左子树
else if (compare(key, node.key) > 0) { node.right = put(key, value, node.right);} //进入右子树
node.N = size(node.left) + size(node.right) + 1; //子节点数 return node;
}
/*
* 查找
*/
public V get(K key) {
return get(key, root);
} private V get(K key, Node node) {
if (node == null) { return null;} if (compare(key, node.key) < 0) { return get(key, node.left);}
else if (compare(key, node.key) > 0) { return get(key, node.right);}
else { return node.value;} //递归结束条件,找到key
}
/*
* 获取最大最小值
*/
public K min() {
return min(root).key;
} private Node min(Node node) {
if (node.left == null) { return node;}
else { return min(node.left);}
} public K max() {
return max(root).key;
} private Node max(Node node) {
if (node.right == null) { return node;}
else { return max(node.right);}
}
/*
* 获取键的排名
*/
public int rank(K key) {
return rank(key, root);
} private int rank(K key, Node node) {
if (node == null) { return 0;} //键不存在返回0 if (compare(key, node.key) < 0) { return rank(key, node.left);}
else if (compare(key, node.key) > 0) { return size(node.left) + 1 + rank(key, node.right);}
//当查找进入右子树时,加上同级左子树的大小,再加1(父节点本身)
else { return size(node.left);} //该节点左子树的大小(它的左子树的key全部比它小)
}
/*
* 根据排名获取键
*/
public Node select(int N) {
return select(N, root);
} private Node select(int N, Node node) { int t = size(node.left) + 1; //获取当前节点在以它为根节点的树中的排名(从1开始排)
if (N < t) { return select(N, node.left);} //与当前排名比较,选择进入左子树还是右子树
else if (N > t) { return select(N - t, node.right);}
//进入右子树时,右子树所有的节点的排名都要加上"同级左子树的大小,再加1(父节点本身)",所以 N - t
else { return node;}
}
/*
* 删除最小键
*/
public void deleteMin() {
root = deleteMin(root);
}
private Node deleteMin(Node node) {
if (node.left == null) { return node.right;} //将最小节点的右子树连在他的父节点上即将它删除
node.left = deleteMin(node.left);
node.N = size(node.left) + size(node.right) + 1; //更新树的大小
return node;
}
/*
* 删除指定键
*/
public void delete(K key) {
root = delete(key, root);
}
private Node delete(K key, Node node) {
if (node == null) { return null;} //找不到键,不做任何处理,原样返回 if (compare(key, node.key) < 0) { node.left = delete(key, node.left);} //向左向右找
else if (compare(key, node.key) > 0) { node.right = delete(key, node.right);}
else {
if (node.right == null) { return node.left;} //如果要删的节点有一边时null,直接把另一条子树连到父节点上
if (node.left== null) { return node.right;}
/*Node tnode = min(node.right);
node.right = deleteMin(node.right);
tnode.left = node.left;
tnode.right = node.right;
tnode.N = size(tnode.left) + size(tnode.right) + 1;
return tnode;*/
//上下两段代码实现了同样的功能,充分体现了差距
Node tnode = node; //将右子树中的最小值(后继节点)连到父节点上,或左子树中的最大值(前趋节点)也可以
node = min(tnode.right);
node.right = deleteMin(tnode.right); //把将要连到父节点上的那个后继节点在当前位置删除
node.left = tnode.left; //更新左右子树
} node.N = size(node.left) + size(node.right) + 1; //更新树的大小
return node;
}
/*
* key1 < key2 -1
* key1 > key2 1
* key1 == key2 0
*/
private int compare(K key1, K key2) {
return key1.compareTo(key2);
} private int size(Node node) {
if (node == null) { return 0;}
else { return node.N;}
} /*
* 中序遍历
*/
public void print(Node node) {
if (node == null) {
return;
}
print(node.left);
System.out.print(node.key+" ");
print(node.right);
}
}

算法动态演示

http://www.cs.usfca.edu/~galles/visualization/BST.html

递归的二叉查找树Java实现的更多相关文章

  1. 数据结构二叉树的递归与非递归遍历之java,javascript,php实现可编译(1)java

    前一段时间,学习数据结构的各种算法,概念不难理解,只是被C++的指针给弄的犯糊涂,于是用java,web,javascript,分别去实现数据结构的各种算法. 二叉树的遍历,本分享只是以二叉树中的先序 ...

  2. 二叉树3种递归和非递归遍历(Java)

    import java.util.Stack; //二叉树3种递归和非递归遍历(Java) public class Traverse { /******************一二进制树的定义*** ...

  3. 算法——快速排序迭代式和递归式的Java实现

    快速排序迭代式和递归式的Java实现 快速排序基于分治法的思想,在待排序表中任选一值作为中枢值 pivot,一趟快排将所有大于该值的元素置于一边,小于该值的元素置于另一边,这样一个元素在排序中的最终位 ...

  4. 数据结构实现(四)二叉查找树java实现

    转载 http://www.cnblogs.com/CherishFX/p/4625382.html 二叉查找树的定义: 二叉查找树或者是一颗空树,或者是一颗具有以下特性的非空二叉树: 1. 若左子树 ...

  5. 化繁为简 经典的汉诺塔递归问题 in Java

    问题描述   在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑 ...

  6. 递归-归并排序 思想 JAVA实现

    已知一个数组   15.58.61.75.21.32.89.4.78.83.采用递归实现的归并排序将数组有序. 分治策略:(摘自<算法导论>) 在分治策略中,我们采用递归解决问题 分解:将 ...

  7. 二叉查找树--java

    package com.test.tree; public class BinarySearchTree<T extends Comparable<? super T>> { ...

  8. 非递归遍历二叉树Java版的实现代码(没写层次遍历)

    直接上代码呵呵,里面有注解 package www.com.leetcode.specificProblem; import java.util.ArrayList; import java.util ...

  9. 二叉树的递归插入【Java实现】

    C++中由于有指针的存在,可以让二叉树节点指针的指针作为插入函数的实参,在函数体内通过*操作实现对真实节点指针.节点左孩子指针.节点右孩子指针的改变,这样很容易使用递归将大树问题转化到小树问题.但在J ...

随机推荐

  1. Linux shell 自定义函数

    一.定义shell函数(define function) 语法: [ function ] funname [()] { action; [return int;] } 说明: 1.可以带functi ...

  2. [BZOJ 4832][lydsy 4月赛] 抵制克苏恩

    题面贴一发 [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 443  Solved: 164[Submit][ ...

  3. Spring-mybatis没有了XXXmapper.java和Dao的实现类还有Service的实现类

    对于刚学过框架的同学可能知道,mybatis有两种主要的配置文件: SqlMapConfig.xml(mybatis全局配置文件,名称不固定,用来配置运行环境(数据源.事务) XXXmapper.xm ...

  4. Solr6.5配置中文分词器

    Solr作为搜索应用服务器,我们在使用过程中,不可避免的要使用中文搜索.以下介绍solr自带的中文分词器和第三方分词器IKAnalyzer.  注:下面操作在Linux下执行,所添加的配置在windo ...

  5. theOS环境搭建

    http://joeyio.com/ios/2014/01/01/make-a-mobile-substrate-tweak-using-theos/~/Doucment>: cd mytwea ...

  6. com.mysql.jdbc.exceptions.MySQLSyntaxErrorException错误

    com.mysql.jdbc.exceptions.MySQLSyntaxErrorException: You have an error in your SQL syntax; check the ...

  7. python中的赋值和深浅拷贝

    python中,A object  = B object  是一种赋值操作,赋的值不是一个对象在内存中的空间,而只是这个对象在内存中的位置 . 此时当B对象里面的内容发生更改的时候,A对象也自然而然的 ...

  8. Linux - 简明Shell编程05 - 条件语句(Case)

    脚本地址 https://github.com/anliven/L-Shell/tree/master/Shell-Basics 示例脚本及注释 #!/bin/bash var=$1 # 将脚本的第一 ...

  9. JFFS2文件系统的移植

    Linux文件系统的移植-JFFS2 JFFS2是JFFS的后继者,由Red Hat重新改写而成.JFFS2的全名为JournallingFlash File System Version 2(闪存日 ...

  10. iOS之Cocoapods安装

    网上关于cocoapods的教程很多,关于它的优点我不赘述:但是我根据多次安装的经验,把我遇到的问题写一下,希望对新手有所帮助. 1. 设置输入源(由于默认的gem资源是国外的,由于历史原因,访问比较 ...