POJ 2370 Democracy in danger(简单贪心)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3388 | Accepted: 2508 |
Description
The essence of the reform is as follows. From the moment of its coming into effect all the citizens were divided into K (may be not equal) groups. Votes on every question were to be held then in each group, moreover, the group was said to vote "for" if more than half of the group had voted "for", otherwise it was said to vote "against". After the voting in each group a number of group that had voted "for" and "against" was calculated. The answer to the question was positive if the number of groups that had voted "for" was greater than the half of the general number of groups.
At first the inhabitants of the island accepted this system with pleasure. But when the first delights dispersed, some negative properties became obvious. It appeared that supporters of the party, that had introduced this system, could influence upon formation of groups of voters. Due to this they had an opportunity to put into effect some decisions without a majority of voters "for" it.
Let's consider three groups of voters, containing 5, 5 and 7 persons, respectively. Then it is enough for the party to have only three supporters in each of the first two groups. So it would be able to put into effect a decision with the help of only six votes "for" instead of nine, that would .be necessary in the case of general votes.
You are to write a program, which would determine according to the given partition of the electors the minimal number of supporters of the party, sufficient for putting into effect of any decision, with some distribution of those supporters among the groups.
Input
Output
Sample Input
3
5 7 5
Sample Output
6
Source
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
int main()
{
int a[];
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int sum=;
for(int i=;i<n/+;i++)
sum+=a[i]/+;
printf("%d\n",sum);
}
return ;
}
POJ 2370 Democracy in danger(简单贪心)的更多相关文章
- CF 628C --- Bear and String Distance --- 简单贪心
CF 628C 题目大意:给定一个长度为n(n < 10^5)的只含小写字母的字符串,以及一个数d,定义字符的dis--dis(ch1, ch2)为两个字符之差, 两个串的dis为各个位置上字符 ...
- poj 3069 Saruman's Army (贪心)
简单贪心. 从左边开始,找 r 以内最大距离的点,再在该点的右侧找到该点能覆盖的点.如图. 自己的逻辑有些混乱,最后还是参考书上代码.(<挑战程序设计> P46) /*********** ...
- Uva 11729 Commando War (简单贪心)
Uva 11729 Commando War (简单贪心) There is a war and it doesn't look very promising for your country. N ...
- CDOJ 1502 string(简单贪心)
题目大意:原题链接 相邻两个字母如果不同,则可以结合为前一个字母,如ac可结合为a.现给定一个字符串,问结合后最短可以剩下多少个字符串 解体思路:简单贪心 一开始读题时,就联想到之前做过的一道题,从后 ...
- ACM_发工资(简单贪心)
发工资咯: Time Limit: 2000/1000ms (Java/Others) Problem Description: 作为广财大的老师,最盼望的日子就是每月的8号了,因为这一天是发工资的日 ...
- ACM_Ruin of Titanic(简单贪心)
Ruin of Titanic Time Limit: 2000/1000ms (Java/Others) Problem Description: 看完Titanic后,小G做了一个梦.梦见当泰坦尼 ...
- POJ 2209 The King(简单贪心)
The King Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7499 Accepted: 4060 Descript ...
- POJ 2376 (区间问题,贪心)
题目链接:http://poj.org/problem?id=2376 题目大意:选择一些区间使得能够覆盖1-T中的每一个点,并且区间数最少 题目分析:这道题目很明显可以用贪心法来解决.但题目没有看起 ...
- hdu 2037简单贪心--活动安排问题
活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子.该问题要求高效地安排一系列争用某一公共资源的活动.贪心算法提供了一个简单.漂亮的方法使得尽可能多的活动 ...
随机推荐
- Qt--自定义Delegate
这是Model/View中的最后一篇了,Qt官方显然弱化了Controller在MVC中的作用,提供了一个简化版的Delegate:甚至在Model/View框架的使用中,提供了默认的委托,让这个控制 ...
- bzoj 4872: [Shoi2017]分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- 浅谈对ST表的一些理解
今天打了人生第一道ST表题(其实只是ST表跑得最快); ST表是一种用来解决RMQ问题的利器... 大体操作有两步: 第一部分nlogn预处理 第二部分O(1)询问 预处理就是运用倍增+区间动规 ST ...
- 根据NPOI 读取一个excel 文件的多个Sheet
大家都知道NPOI组件可以再你本地没有安装office的情况下来 读取,创建excel文件.但是大家一般都是只默认读取一个excel文件的第一个sheet.那么如果要读取一个excel 的所有shee ...
- 视频云SDK iOS持续集成项目实践
1. 前言 2016年, 我们维护的 iOS推流播放融合SDK KSYLive_iOS 在github上发布了40多个版本, 平均两周发布一个新版本, 经历了最初痛苦的全手动版本构建和维护, 到后来慢 ...
- 2.移植uboot-添加2440单板,并实现NOR、NAND启动
上章分析了uboot启动流程后,接下来便来配置新的单板,实现nor.nand启动 1.首先在uboot里新建单板2440 : cd board/samsung/ cp smdk2410 smdk244 ...
- TensorFlow 代码行统计
https://github.com/tensorflow/tensorflow.git
- Java禁止浏览器有缓存的源码
Java禁止浏览器有缓存的源码 import java.io.IOException; import javax.servlet.Filter; import javax.servlet.Filter ...
- Centos7 安装oracle数据库
参考的内容: http://docs.oracle.com/cd/E11882_01/install.112/e24325/toc.htm#CHDCBCJF http://www.cnblogs.co ...
- 一起学Linux03之Linux系统目录结构
我们用XShell登录Linux后,如果你是用root用户登录的,那么直接使用ls命令(List files 列出文件(信息). 注: Linux命令为了方便使用,都是简写.所以,每出现一个新的命令, ...