POJ 2370 Democracy in danger(简单贪心)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3388 | Accepted: 2508 |
Description
The essence of the reform is as follows. From the moment of its coming into effect all the citizens were divided into K (may be not equal) groups. Votes on every question were to be held then in each group, moreover, the group was said to vote "for" if more than half of the group had voted "for", otherwise it was said to vote "against". After the voting in each group a number of group that had voted "for" and "against" was calculated. The answer to the question was positive if the number of groups that had voted "for" was greater than the half of the general number of groups.
At first the inhabitants of the island accepted this system with pleasure. But when the first delights dispersed, some negative properties became obvious. It appeared that supporters of the party, that had introduced this system, could influence upon formation of groups of voters. Due to this they had an opportunity to put into effect some decisions without a majority of voters "for" it.
Let's consider three groups of voters, containing 5, 5 and 7 persons, respectively. Then it is enough for the party to have only three supporters in each of the first two groups. So it would be able to put into effect a decision with the help of only six votes "for" instead of nine, that would .be necessary in the case of general votes.
You are to write a program, which would determine according to the given partition of the electors the minimal number of supporters of the party, sufficient for putting into effect of any decision, with some distribution of those supporters among the groups.
Input
Output
Sample Input
3
5 7 5
Sample Output
6
Source
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
int main()
{
int a[];
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int sum=;
for(int i=;i<n/+;i++)
sum+=a[i]/+;
printf("%d\n",sum);
}
return ;
}
POJ 2370 Democracy in danger(简单贪心)的更多相关文章
- CF 628C --- Bear and String Distance --- 简单贪心
CF 628C 题目大意:给定一个长度为n(n < 10^5)的只含小写字母的字符串,以及一个数d,定义字符的dis--dis(ch1, ch2)为两个字符之差, 两个串的dis为各个位置上字符 ...
- poj 3069 Saruman's Army (贪心)
简单贪心. 从左边开始,找 r 以内最大距离的点,再在该点的右侧找到该点能覆盖的点.如图. 自己的逻辑有些混乱,最后还是参考书上代码.(<挑战程序设计> P46) /*********** ...
- Uva 11729 Commando War (简单贪心)
Uva 11729 Commando War (简单贪心) There is a war and it doesn't look very promising for your country. N ...
- CDOJ 1502 string(简单贪心)
题目大意:原题链接 相邻两个字母如果不同,则可以结合为前一个字母,如ac可结合为a.现给定一个字符串,问结合后最短可以剩下多少个字符串 解体思路:简单贪心 一开始读题时,就联想到之前做过的一道题,从后 ...
- ACM_发工资(简单贪心)
发工资咯: Time Limit: 2000/1000ms (Java/Others) Problem Description: 作为广财大的老师,最盼望的日子就是每月的8号了,因为这一天是发工资的日 ...
- ACM_Ruin of Titanic(简单贪心)
Ruin of Titanic Time Limit: 2000/1000ms (Java/Others) Problem Description: 看完Titanic后,小G做了一个梦.梦见当泰坦尼 ...
- POJ 2209 The King(简单贪心)
The King Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7499 Accepted: 4060 Descript ...
- POJ 2376 (区间问题,贪心)
题目链接:http://poj.org/problem?id=2376 题目大意:选择一些区间使得能够覆盖1-T中的每一个点,并且区间数最少 题目分析:这道题目很明显可以用贪心法来解决.但题目没有看起 ...
- hdu 2037简单贪心--活动安排问题
活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子.该问题要求高效地安排一系列争用某一公共资源的活动.贪心算法提供了一个简单.漂亮的方法使得尽可能多的活动 ...
随机推荐
- 【python】字符串变量赋值时字符串可用单或双引号
>>> name='萧峰' >>> print(name) 萧峰 >>> name="独孤求败" >>> p ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 并行rsync
#!/bin/bash ]; then echo -e "usage : \n\t$0 hostList src_file dst_path" echo -e "exam ...
- 记一次生产环境Nginx日志骤增的问题排查过程
摘要:众所周知,Nginx是目前最流行的Web Server之一,也广泛应用于负载均衡.反向代理等服务,但使用过程中可能因为对Nginx工作原理.变量含义理解错误,或是参数配置不当导致Nginx工作异 ...
- shell 踩坑记
变量赋值时,等号两边不能有空格: 在判断表达式中,不论是 [ -n "$1" ] 还是 [ -f "$1" ] 都要在变量两侧加上双引号: 在使用与或非判断式 ...
- 教你如何安装配置Windows7系统 IIS IIS7.5本地浏览测试网站 完整版介绍
大家都知道网站建设前期测试于浏览网站都喜欢用iis本地浏览来操作 那么为了方便大家自己来安装和配置Internet信息服务 相信大家,对于Windows 7有了相应的了解,从操作上,使用上,内置功能上 ...
- GIT命令一页纸
,配置用户名和邮箱 $ git config --global user.name "Your Name" $ git config --global user.email &qu ...
- c=$[$c%5]到let c=$c%5的转换
刚学shell不知道怎么转换,现在明白了一点点 ,记录下 变成加法就好明白了 c=$[$c+5] let c=$c+5 #变量c等于C加上5后在赋值给自身 let c+=5 #就可以这样表 ...
- Optimize For Ad Hoc Workloads
--临时工作负载优化 即席查询:也就是查询完没放到Cache当中,每次查询都要重新经过编译,并发高的时候很耗性能: 参数化查询: 一方面解决了重编译问题,但随着数据库数据数据的变更,统计信息的更新 ...
- 安卓电量优化之AlarmManager使用全部解析
版权声明:本文出自汪磊的博客,转载请务必注明出处. 一.AlarmManager概述 AlarmManager是安卓系统中一种系统级别的提示服务,可以在我们设定时间或者周期性的执行一个intent,这 ...