Emrips 反质数枚举 javascript实现
今天看到一个kata,提出一个“emirps”的概念:一个质数倒转后得到的是一个不同的质数,这个数叫做“emirps”。
例如:13,17是质数,31,71也是质数,13和17是“emirps”。 但是质数757,787,797是回文质数,这意味着反转的数字与原始数字相同,所以它们不被认为是“emirps”。
题目要求写一个函数输入一个正整数n,返回小于n的“emirps”的个数,其中最大“emirps”、以及所有小于n的“emirps”的和。
解题思路为先枚举出所有小于n的质数,然后剔除回文质数以及颠倒后为合数的数。
先写判断质数的函数
主要根据三个数学结论:
- 所有合数都是若干个质数的乘积
- 如一个数可以进行因式分解,那么两个因数一定是一个小于等于sqrt(n),一个大于等于sqrt(n)。
- 所有大于3的质数都是6X+1或者6X-1这种形式,也就是6的倍数的相邻的数,但并不是所有6X+1或者6X-1都是质数。
第一个结论用反证法即可证明
第三个结论证明:
我们把数字都表示为以下形式 6X-1、6X、6X+1、6X+2、6X+3、6X+4 (X为正整数)
6X => 2*3x
6X+2 => 2(3x+1)
6X+3 => 3(2x+1)
6X+4 => 2(3x+2) 可证明这些肯定不为质数,即质数只能为6X-1或者6X-1
代码:
function isPrimeNumber(num){ if(num == 2 || num == 3){
return true;
}/*2、3特殊处理*/ if(num % 6 != 1 && num % 6 != 5){
return false;
}/*根据结论三排除*/ for(var i=5;i<=Math.sqrt(num);i+=6){
if(num % i == 0 || num % (i+2) == 0){
return false;
}
}/*根据结论二、结论三排除*/ return true;
}
再剔除回文质数以及颠倒后为合数的数
代码:
function emirpNumber(num){ var reverseNumber = Number(String(num).split('').reverse().join('')) if(reverseNumber != num && isPrimeNumber(reverseNumber)){
return true;
}
else{
return false;
}
}
最后输出想要的结果
代码:
function findEmirp(n){ var emirpGroup = []; for(var i=1;i<n;i++){
if(isPrimeNumber(i) && emirpNumber(i)){
emirpGroup.push(i);
}
} return [
'n为:' + n,
'数量为:' + emirpGroup.length,
'最大数:' + emirpGroup[emirpGroup.length - 1],
'求和:' + emirpGroup.reduce(function(total,current){
return total + current;
})
]
}
看一下输出结果和用时
n=1000000:

n=10000000:

Emrips 反质数枚举 javascript实现的更多相关文章
- 反质数(Antiprimes)
转载http://www.cnblogs.com/tiankonguse/archive/2012/07/29/2613877.html 问题描述: 对于任何正整数x,起约数的个数记做g(x).例如g ...
- CNUOJ 0486 800401反质数
难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 将正整数 x 的约数个数表示为 g(x).例如,g(1)=1,g(4)=3, g ...
- 反质数问题,求不大于n的最大反质数
反质数:设f(n)表示n个约数的个数,如果对于任意x有0<x<n, f(x) < f(n),那么n就是一个反质数 我们都知道对于任意一个数n,都可以用质数乘积的形式表示出来:x = ...
- COJN 0486 800401反质数 呵呵呵呵呵
800401反质数 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 将正整数 x 的约数个数表示为 g(x).例如,g(1)=1 ...
- HYSBZ 1053 反质数
input n 1<=n<=2000000000 output 不大于n的最大反质数 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g( ...
- bzoj:3085: 反质数加强版SAPGAP
Description 先解释一下SAPGAP=Super AntiPrime, Greatest AntiPrime(真不是网络流),于是你就应该知道本题是一个关于反质数(Antiprime)的问题 ...
- BZOJ1053 [HAOI2007]反素数 & BZOJ3085 反质数加强版SAPGAP
BZOJ 1053 Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x ...
- BZOJ 3085: 反质数加强版SAPGAP (反素数搜索)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3085 题意:求n(<=10^100)之内最大的反素数. 思路: 优化2: i ...
- [BZOJ4857][JSOI2016]反质数序列[最大点独立集]
题意 在长度为 \(n\) 的序列 \(a\) 中选择尽量长的子序列,使得选出子序列中任意两个数的和不为质数. \(n\leq3000\ ,a_i\leq10^5\). 分析 直接按照奇偶性建立二分图 ...
随机推荐
- ASP.NET MVC 分页问题
在使用Ajax.Pager进行分页的时候需要注意一下几个方面: 1.一定要引入jquery.unobtrusive-ajax.min.js这个js: 2.一定要在页面中使用注册分页器,注册方法:@{H ...
- Java的继承、封装与多态
Java的继承.封装与多态 基本概念 面向对象OO(Object Oriented):把数据及对数据的操作方法放在一起,作为一个相互依存的整体,即对象. 对同类对象抽象出共性,即类. 比如人就是一个类 ...
- PHP四种基本排序算法
PHP的四种基本排序算法为:冒泡排序.插入排序.选择排序和快速排序. 下面是我整理出来的算法代码: 1. 冒泡排序: 思路:对数组进行多轮冒泡,每一轮对数组中的元素两两比较,调整位置,冒出一个最大的数 ...
- 浅析Entity Framework Core中的并发处理
前言 Entity Framework Core 2.0更新也已经有一段时间了,园子里也有不少的文章.. 本文主要是浅析一下Entity Framework Core的并发处理方式. 1.常见的并发处 ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- virualbox 安装 otter 必备软件
前言 最近研究了一下阿里otter项目(分布式数据库同步),所以就在virualbox 上开始准备学习一下,遇到了不少坑,所以记录一下啊. otter 项目:https://github.com/al ...
- C++编程求数组中重复的数字
题目:在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果输入长度为7的 ...
- gbdt的面试要点总结-上篇
1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,gbdt在各种竞赛是大放异彩.原因大概有几个,一是效果确实挺不错.二是 ...
- Rem与Px的转换[转载]
原文:http://www.w3cplus.com/preprocessor/sass-px-to-rem-with-mixin-and-function.html rem是CSS3中新增加的一个单位 ...
- 原生addClass 方法 添加类函数
function addClass(id,new_class){ var i,n=0; new_class=new_class.split(","); ...