Building roads

Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 34 Accepted Submission(s): 13
 
Problem Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

 
Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

 
Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.
 
Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
 
Sample Output
53246
 
 
Source
POJ Monthly - 2006.01.22 - zhucheng
 
Recommend
威士忌
 
/*
题意:有n个牛棚,给出坐标,农夫想先建两个中转站s1,s2,然后每个牛棚通过中转站进行相互联通,但是给出a,b牛棚的牛相互厌恶
不能通过同一个中转站,c,d两个牛棚的牛相互喜欢,必须通过同一个中转站。s1 ,s2是连通的中间有一条路,现在让你求怎么样
建边,才能使这些牛棚距离最大的两个牛棚的距离最小。 题意:和maximum shortest distance(最大团)相似,就是二分距离建边,然后判断的时候只需要用2-SAT跑一下看是否可以解决就可
以,问题的关键就在于如何建边,每次二分判断的时候,先按照A B的要求进行建边,然后按照如果距离大于mid的建边,然后再判
段是不是可以解决2-SAT问题。 #错误:RE正在debug
build 写的不是很好
*/
#include<bits/stdc++.h>
using namespace std;
/*********************************************2-SAT模板*********************************************/
const int maxn=+;
struct TwoSAT
{
int n;//原始图的节点数(未翻倍)
vector<int> G[maxn*];//G[i].j表示如果mark[i]=true,那么mark[j]也要=true
bool mark[maxn*];//标记
int S[maxn*],c;//S和c用来记录一次dfs遍历的所有节点编号 //从x执行dfs遍历,途径的所有点都标记
//如果不能标记,那么返回false
bool dfs(int x)
{
if(mark[x^]) return false;//这两句的位置不能调换
if(mark[x]) return true;
mark[x]=true;
S[c++]=x;
for(int i=;i<G[x].size();i++)
if(!dfs(G[x][i])) return false;
return true;
} void init(int tol)
{
n=tol;
for(int i=;i<*tol;i++)
G[i].clear();
memset(mark,,sizeof(mark));
} //加入(x,xval)或(y,yval)条件
//xval=0表示假,yval=1表示真
void add_clause(int x,int xval,int y,int yval)//这个地方不是一尘不变的,而是参照问题的约束条件进行加边
{
x=x*+xval;
y=y*+yval;
G[x^].push_back(y);//这是建双向边
G[y^].push_back(x);
} //判断当前2-SAT问题是否有解
bool solve()
{
for(int i=;i<*n;i+=)
if(!mark[i] && !mark[i+])
{
c=;
if(!dfs(i))
{
while(c>) mark[S[--c]]=false;
if(!dfs(i+)) return false;
}
}
return true;
}
}TS;
/*********************************************2-SAT模板*********************************************/
struct Point{
int x,y;
Point(){}
Point(int a,int b){
x=a;
y=b;
}
void input(){
scanf("%d%d",&x,&y);
}
};
int dis(Point a,Point b){//曼哈顿距离
int dx=a.x-b.x;
int dy=a.y-b.y;
return abs(dx)+abs(dy);
}
int n,A,B;
Point s1,s2;//中转站
Point p[maxn];//牛棚的坐标
Point a[maxn*],b[maxn*];//用来标记A B给出的关系
int g[maxn][maxn][];//离散化两点间的距离,两点的距离总共有四种状态,都在s1,都在s2,交叉的两种
int sTos=;//s1和s2间的距离 void init(){//初始化出所有的两点间的距离
for(int i=;i<n;i++){
for(int j=;j<i;j++){
g[i][j][]=dis(p[i],s1)+dis(p[j],s1);//都在s1
g[i][j][]=dis(p[i],s1)+dis(p[j],s2)+sTos;//i在s1 j在s2
g[i][j][]=dis(p[i],s2)+dis(p[j],s1)+sTos;//i在s2 j在s1
g[i][j][]=dis(p[i],s2)+dis(p[j],s2);//都在s2
}
}
} bool judge(int mid){//按照要求将所有的边建好
TS.init(n); /* × */
for(int i=;i<A;i++){//相互喜欢的,都在s1或者s2
TS.add_clause(a[i].x-,,a[i].y-,);
TS.add_clause(a[i].y-,,a[i].x-,);
}
for(int i=;i<B;i++){//相互讨厌的,只要不在一块就行
TS.add_clause(b[i].x-,,b[i].x-,);
TS.add_clause(b[i].y-,,b[i].y-,);
TS.add_clause(b[i].x-,,b[i].y-,);
TS.add_clause(b[i].y-,,b[i].x-,);
} for(int i=;i<n;i++){ /* √ */
for(int j=;j<i;j++){
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//都在s1
}
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//i在s1 j在s2
}
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//i在s2 j在s1
}
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//都在s2
}
}
}
return TS.solve();
}
int main(){
// freopen("in.txt","r",stdin);
while(scanf("%d%d%d",&n,&A,&B)!=EOF){
s1.input();s2.input();
// cout<<s1.x<<" "<<s1.y<<" "<<s2.x<<" "<<s2.y<<endl;
sTos=dis(s1,s2);
// cout<<sTos<<endl;
for(int i=;i<n;i++){
p[i].input();
// cout<<p[i].x<<" "<<p[i].y<<endl;
}//处理点的输入
init();
// for(int i=0;i<n;i++){
// for(int j=0;j<n;j++){
// cout<<g[i][j][0]<<" ";
// }cout<<endl;
// }
for(int i=;i<A;i++){
a[i].input();
// cout<<a[i].x<<" "<<a[i].y<<endl;
}
for(int i=;i<B;i++){
b[i].input();
// cout<<b[i].x<<" "<<b[i].y<<endl;
}
if(judge()==false){//如果这种状态不可能的就直接输出就行了
puts("-1");
continue;
}
int l=,r=;
while(l<r){
// cout<<l<<" "<<r<<endl;
int mid=(l+r)/;
if(judge(mid)==false)
l=mid+;
else r=mid;
}
printf("%d\n",l);
}
return ;
}

Building roads的更多相关文章

  1. poj 3625 Building Roads

    题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...

  2. poj 2749 Building roads (二分+拆点+2-sat)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6229   Accepted: 2093 De ...

  3. BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )

    计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...

  4. HDU 1815, POJ 2749 Building roads(2-sat)

    HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...

  5. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  6. [POJ2749]Building roads(2-SAT)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8153   Accepted: 2772 De ...

  7. bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树

    1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer J ...

  8. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  9. USACO Building Roads

    洛谷 P2872 [USACO07DEC]道路建设Building Roads 洛谷传送门 JDOJ 2546: USACO 2007 Dec Silver 2.Building Roads JDOJ ...

随机推荐

  1. Python 接口测试(五)

    五:使用python进行组织编写接口测试用例 接口测试其实就是几个步骤. 拿到接口的url地址 查看接口是用什么方式发送 添加请求头,请求体 发送查看返回结果,校验返回结果是否正确 明白了接口测试的测 ...

  2. 最详细的PHP flush()与ob_flush()的区别详解

    buffer ---- flush()buffer是一个内存地址空间,Linux系统默认大小一般为4096(1kb),即一个内存页.主要用于存储速度不同步的设备或者优先级不同的 设备之间传办理数据的区 ...

  3. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  4. Https系列之三:让服务器同时支持http、https,基于spring boot

    Https系列会在下面几篇文章中分别作介绍: 一:https的简单介绍及SSL证书的生成二:https的SSL证书在服务器端的部署,基于tomcat,spring boot三:让服务器同时支持http ...

  5. Linux学习——Shell基础

    1 shell概述 Shell 是一个命令行解释器,它为用户提供了一个向Linux内核发送请求以便运行程序的界面系统级程序,用户可以用shell来启动,挂起,停止甚至编写一些程序. Shell 还是一 ...

  6. Another Easy Problem fzu1753

    Another Easy Problem Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u ...

  7. bzoj1968 COMMON 约数研究

    Input只有一行一个整数 N(0 < N < 1000000).Output只有一行输出,为整数M,即f(1)到f(N)的累加和.Sample Input 3 Sample Output ...

  8. C# 7.0 新特性:本地方法

    C# 7.0:本地方法 VS 2017 的 C# 7.0 中引入了本地方法,本地方法是一种语法糖,允许我们在方法内定义本地方法.更加类似于函数式语言,但是,本质上还是基于面向对象实现的. 1. 本地方 ...

  9. python对列表的联想

    python的列表与字典,已经接触无数次了.但是很多用法都记不住,个人觉得归根原因都是只是学了知识点而少用,也少思考.在此试图用宫殿记忆法对它们的用法做个简单的梳理. 首先,说说列表的删除,删除有三种 ...

  10. [Unity]Unity3D编辑器插件扩展和组件扩展

    1. 插件扩展 1.1. 命名空间 using UnityEditor; using UnityEngine; //非必需,常用到 1.2. 使用语法 [MenuItem("Assets/M ...