MRO

MRO 全称方法解析顺序(Method Resolution Order),在多重继承和多继承存在的时候,寻找属性及方法的顺序。

深度优先(DFS)与广度优先(BFS)

python2 所用的 mro 就是深度优先的算法,但是深度优先针对菱形继承会有问题,如图:

graph TB
D(D) -->B(B)
D(D) -->C(C)
B(B) -->A(A)
C(C) -->A(A)

DFS: A->B->D->C

BFS:A->B->C->D

如果使用深度优先的算法,C重载了D的一个方法,会导致搜索不到C的重载,只会用到D

那么针对这种菱形继承应该使用BFS。


然而BFS 同样也会具有问题,如图:

graph TB
D(D) -->B(B)
E(E) -->C(C)
B(B) -->A(A)
C(C) -->A(A)

DFS: A->B->D->C->E

BFS: A->B->C->D->E

针对这种继承如果使用广度优先,C和D有同名方法,正常应该使用D的方法(D,B应为一个整体,B的优先级比C高),但是如果广度优先就会使用到C的方法。

C3 linearization 测试

为了解决以上问题 python3 使用的mro是 c3 linearization 算法,翻译就是 c3线性化算法,也就是本文重点介绍的内容。

可以简单看一下 python3 针对上述俩种继承的解析顺序:

# 菱形继承
class D:
pass class B(D):
pass class C(D):
pass class A(B,C):
pass print(A.__mro__)

输出:

(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>)
class D:
pass class E:
pass class B(D):
pass class C(E):
pass class A(B,C):
pass print(A.__mro__)

输出:

(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.D'>, <class '__main__.C'>, <class '__main__.E'>, <class 'object'>)

可以看到,顺序是合理的,但其使用即不是 DFS也不是BFS。其调用算法就是 c3 算法。

C3 linearization 算法原理

首先我们定义几个符号的意义:(因为后面会用到公式表达)

符号 意义
L 针对一个类进行解析用L进行表示,例如L(A)表示对类A进行解析
merge 合并操作的一个函数(后面具体介绍)
C 表示一个类名
B 表示是C的一个子类,如果多个子类用B1,B2....表示
+ 元素列表顺序添加
tail 去除列表第一个元素,例如 tail([1,2,3,4]) = [2,3,4]

下面是一个关键定义:

L(C) = C + merge(L(B1) + L(B2) + ...+ )

merge函数是如何合并的:

  1. 首先选中merge 函数的第一个参数(也是一个列表),按照公式里的描述就是L(B1)。
  2. 取列表中第一个元素记为h,如果h没有出现其他 列表的tail中, 那么将其移到 merge函数前,提取出来,并且将这个元素在所有列表中移除,并重复 2。
  3. 如果出现在其他列表中的 tail 中,寻找下一个列表。
  4. merge 函数所有元素都被移除类创建成功,如果寻找不到下一个列表则创建失败。

看到这里可能有点懵,下面具体举一个例子:

graph TB
X(X) -->A(A)
Y(Y) -->A(A)
X(X) -->B(B)
Y(Y) -->B(B)
A(A) -->F(F)
B(B) -->F(F)
class X():
pass class Y():
pass class A(X, Y):
pass class B(X, Y):
pass class F(A, B):
pass
print(F.__mro__)

我们来解析 F的mro顺序,则首先记为 L(F),根据

L(C) = C + merge(L(B1) + L(B2) + ...+ )

公式得到:

L(F) = F + merge(L(A)+L(B))

接下来计算L(A),与L(B):

L(A) = A + merge(L(X),L(Y)) = A + merge([X],[Y]) = [A,X,Y]
L(B) = B + merge(L(X),L(Y)) = B + merge([X],[Y]) = [B,X,Y]

带入 L(F) = L(F) + merge(L(A)+L(B)) 得到:

L(F) = F + merge([A,X,Y],[B,X,Y])

下面是关键merge逻辑理解了,首先根据 merge 的说明 1,选中得到 [A,X,Y], 根据merge的说明2,选中第一个元素 A, 判断A 是否在 tail(B,X,Y) 中,即 A 是否在 [X,Y] 中,不在,将其提出来,得到:

L(F) = F + merge([A,X,Y],[B,X,Y]) = [F,A] + merge([X,Y],[B,X,Y])

接着重复 merge的2,判断 X 是否在 tail(B,X,Y)=[X,Y] 中,结果是存在,那么寻找[X,Y]的下一个列表,即[B,X,Y],判断B 是否存在 tail([X,Y])=[Y] 中,不存在,提出B,得到:

L(F) = F + merge([A,X,Y],[B,X,Y]) = [F,A] + merge([X,Y],[B,X,Y]) = [F,A,B] + merge([X,Y],[X,Y])

剩下逻辑一样,依次提出 X和Y:

L(F) = F + merge([A,X,Y],[B,X,Y]) = [F,A] + merge([X,Y],[B,X,Y]) = [F,A,B] + merge([X,Y],[X,Y]) = [F,A,B,X,Y]

可以将我上述python代码运行一下结果和我们手算的是一样的:

(<class '__main__.F'>, <class '__main__.A'>, <class '__main__.B'>, <class '__main__.X'>, <class '__main__.Y'>, <class 'object'>)

复杂的解析(练手逻辑)

graph TB
O(O) --> C(C)
O(O) --> A(A)
O(O) --> B(B)
O(O) --> D(D)
O(O) --> E(E)
C(C) --> K1(K1)
A(A) --> K1(K1)
B(B) --> K1(K1)
A(A) --> K3(K3)
D(D) --> K3(K3)
B(B) --> K2(K2)
D(D) --> K2(K2)
E(E) --> K2(K2)
K1(K1) --> Z(Z)
K3(K3) --> Z(Z)
K2(K2) --> Z(Z)

L(K1) = K1 + merge(L(C), L(A), L(B))
= K1 + merge([C, O], [A, O], [B, O])
= [K1, C] + merge([O], [A, O], [B, O])
= [K1, C, A] + merge([O], [O], [B, O])
= [K1, C, A, B] + merge([O], [O], [O])
= [K1, C, A, B, O]
L(K2) = [K2, B,D,E, O]
L(K3) = [K3,A, D, O]
L(Z) = Z + merge(L(K1), L(K3), L(K2))
= Z + merge([K1, C, A, B, O],[K3, A, D, O],[K2, B, D, E, O])
= [Z, K1] + merge([C, A, B, O], [K3, A, D, O], [K2, B, D, E, O])
= [Z, K1, C] + merge([A, B, O], [K3, A, D, O], [K2, B, D, E, O])
= [Z K1, C] + merge([A, B, O], [K3, A, D, O], [K2, B, D,E, O])
= [Z, K1, C, K3] + merge([A, B, O], [A, D, O], [K2, B, D, E, O])
= [Z, K1, C, K3, A] + merge([B, O], [D, O], [K2, B, D, E, O])
= [Z,K1, C, K3, A, K2] + merge([B, O], [D, O], [B, D, E, O])
= [Z,K1, C, K3, A, K2, B] + merge([O], [D, O], [D, E, O])
= [Z, K1,C, K3, A, K2, B, D] + merge([O], [O], [E,O])
= [Z, K1,C, K3, A, K2, B, D, E, O]
class O:
pass class C(O):
pass class A(O):
pass class B(O):
pass class D(O):
pass class E(O):
pass class K1(C,A,B):
pass class K3(A,D):
pass class K2(B,D,E):
pass class Z(K1,K3,K2):
pass print(Z.__mro__)

其实我看到很多文章有这种写法:

L(K1) = K1 + merge(L(C), L(A), L(B),(C,A,B))

这个(C,A,B)写不写都可以,最后都是要删除的,很多国外网站文章习惯这么写,应该是便于理解。

手写一个C3 linearization 算法

理解了merge的原理,我想我可以简单实现一下这个算法,可能你已经想象到了针对 L 的函数需要用到递归实现,merge参数传递一个二维数组就可以。

class O:
pass class C(O):
pass class A(O):
pass class B(O):
pass class D(O):
pass class E(O):
pass class K1(C,A,B):
pass class K3(A,D):
pass class K2(B,D,E):
pass class Z(K1,K3,K2):
pass import copy
# merge_list 为一个二维的数组
def merge(merge_list):
index = 0
res = []
while index < len(merge_list): if "".join(["".join(i) for i in merge_list]) == "":
break
if merge_list[index] == []:
index += 1
first = merge_list[index][0]
t = copy.deepcopy(merge_list)
t.pop(index)
temp_all = "".join(["".join(i[1:]) for i in t])
if first not in temp_all:
for temp_list in merge_list:
if first in temp_list:
temp_list.remove(first)
res.append(first)
else:
index += 1
return res def L(arg_class):
if arg_class.__bases__[0].__name__ == 'object':
return [arg_class.__name__]
res = [arg_class.__name__]
res += merge([L(clss) for clss in arg_class.__bases__])
return res print(Z.__mro__)
print(L(Z))

我也没好好优化这个算法,反正能跑通,另外无法测试 错误继承,因为错误继承在类的实现的时候就会报错,为了方便测试我自己算法是否正确(看看__mro__属性就可以了),类的继承使用和python内置继承,没有自己写继承逻辑。

c3 linearization详解的更多相关文章

  1. c3算法详解

    c3 算法求某一类在多继承中的继承顺序:类的mro == [类] + [父类的继承顺序] + [父类2的继承顺序]如果从左到右的第一个类在后面的顺序中出现,那么就提取出来到mro顺序中[ABCD] + ...

  2. org.apache.log4j.Logger详解

    org.apache.log4j.Logger 详解 1. 概述 1.1. 背景 在应用程序中添加日志记录总的来说基于三个目的 :监视代码中变量的变化情况,周期性的记录到文件中供其他应用进行统计分析工 ...

  3. C#中string.format用法详解

    C#中string.format用法详解 本文实例总结了C#中string.format用法.分享给大家供大家参考.具体分析如下: String.Format 方法的几种定义: String.Form ...

  4. Log4j配置详解(转)

    一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

  5. [Java入门笔记] 面向对象编程基础(二):方法详解

    什么是方法? 简介 在上一篇的blog中,我们知道了方法是类中的一个组成部分,是类或对象的行为特征的抽象. 无论是从语法和功能上来看,方法都有点类似与函数.但是,方法与传统的函数还是有着不同之处: 在 ...

  6. Log4J日志配置详解

    一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

  7. Linux C 字符串输入函数 gets()、fgets()、scanf() 详解

    一.gets() 函数详解 gets()函数用来从 标准输入设备(键盘)读取字符串直到 回车结束,但回车符('\n')不属于这个字符串. 调用格式为: gets(str); 其中str为字符串变量(字 ...

  8. JMeter学习-023-JMeter 命令行(非GUI)模式详解(一)-执行、输出结果及日志、简单分布执行脚本

    前文 讲述了JMeter分布式运行脚本,以更好的达到预设的性能测试(并发)场景.同时,在前文的第一章节中也提到了 JMeter 命令行(非GUI)模式,那么此文就继续前文,针对 JMeter 的命令行 ...

  9. Netsuite Formula > Oracle函数列表速查(PL/SQL单行函数和组函数详解).txt

    PL/SQL单行函数和组函数详解 函数是一种有零个或多个参数并且有一个返回值的程序.在SQL中Oracle内建了一系列函数,这些函数都可被称为SQL或PL/SQL语句,函数主要分为两大类: 单行函数 ...

  10. Log4J详解

    Log4J 简介  Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

随机推荐

  1. Python数据科学手册-机器学习之模型验证

    模型验证 model validation 就是在选择 模型 和 超参数 之后.通过对训练数据进行学习.对比模型对 已知 数据的预测值和实际值 的差异. 错误的模型验证方法. 用同一套数据训练 和 评 ...

  2. 搭建Elasitc stack集群需要注意的日志问题

    文章转载自:https://blog.csdn.net/u013613428/article/details/84943577 {{uploading-image-736853.png(uploadi ...

  3. 第六章:Django 综合篇 - 12:聚合内容 RSS/Atom

    Django提供了一个高层次的聚合内容框架,让我们创建RSS/Atom变得简单,你需要做的只是编写一个简单的Python类. 一.范例 要创建一个feed,只需要编写一个Feed类,然后设置一条指向F ...

  4. 利用分层机制优化 Docker Image

    文章转载自:https://mp.weixin.qq.com/s/FrIOIquHVsCTEMfHiF87MA 假设系统中我们有两个应用 App1 和 App2.这两个节点的环境信息如下: 通过上表环 ...

  5. Elastic:使用Postman来访问Elastic Stack

    转载自:https://elasticstack.blog.csdn.net/article/details/104982536 官方链接地址:https://www.elastic.co/guide ...

  6. PAT (Basic Level) Practice 1021 个位数统计 分数 15

    给定一个 k 位整数 N=dk−1​10k−1+⋯+d1​101+d0​ (0≤di​≤9, i=0,⋯,k−1, dk−1​>0),请编写程序统计每种不同的个位数字出现的次数.例如:给定 N= ...

  7. python-函数-统计函数

    #(1)amax(),amin() 作用:计算数组中的元素沿指定轴的最大值,最小值 import numpy as np x = np.random.randint(1,11,9).reshape(( ...

  8. Hudi 数据湖的插入,更新,查询,分析操作示例

    Hudi 数据湖的插入,更新,查询,分析操作示例 作者:Grey 原文地址: 博客园:Hudi 数据湖的插入,更新,查询,分析操作示例 CSDN:Hudi 数据湖的插入,更新,查询,分析操作示例 前置 ...

  9. 2022最新最详细必成功的在Vscode中设置背景图、同时解决不受支持的问题

    文章目录 1.效果展示 2.设置背景图的详细步骤 2.1 .下载background插件 2.2 .选择扩展设置 2.3 .在setting.json中编辑 2.4.对应的配置文件 2.5 .重启电脑 ...

  10. 5.github操作

      Github设置远程仓库 将我们github的https或者ssh远程仓库地址复制 git remote add https://xxxxxxxTest.git # 指定github仓库设置为远程 ...