MRO

MRO 全称方法解析顺序(Method Resolution Order),在多重继承和多继承存在的时候,寻找属性及方法的顺序。

深度优先(DFS)与广度优先(BFS)

python2 所用的 mro 就是深度优先的算法,但是深度优先针对菱形继承会有问题,如图:

graph TB
D(D) -->B(B)
D(D) -->C(C)
B(B) -->A(A)
C(C) -->A(A)

DFS: A->B->D->C

BFS:A->B->C->D

如果使用深度优先的算法,C重载了D的一个方法,会导致搜索不到C的重载,只会用到D

那么针对这种菱形继承应该使用BFS。


然而BFS 同样也会具有问题,如图:

graph TB
D(D) -->B(B)
E(E) -->C(C)
B(B) -->A(A)
C(C) -->A(A)

DFS: A->B->D->C->E

BFS: A->B->C->D->E

针对这种继承如果使用广度优先,C和D有同名方法,正常应该使用D的方法(D,B应为一个整体,B的优先级比C高),但是如果广度优先就会使用到C的方法。

C3 linearization 测试

为了解决以上问题 python3 使用的mro是 c3 linearization 算法,翻译就是 c3线性化算法,也就是本文重点介绍的内容。

可以简单看一下 python3 针对上述俩种继承的解析顺序:

# 菱形继承
class D:
pass class B(D):
pass class C(D):
pass class A(B,C):
pass print(A.__mro__)

输出:

(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>)
class D:
pass class E:
pass class B(D):
pass class C(E):
pass class A(B,C):
pass print(A.__mro__)

输出:

(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.D'>, <class '__main__.C'>, <class '__main__.E'>, <class 'object'>)

可以看到,顺序是合理的,但其使用即不是 DFS也不是BFS。其调用算法就是 c3 算法。

C3 linearization 算法原理

首先我们定义几个符号的意义:(因为后面会用到公式表达)

符号 意义
L 针对一个类进行解析用L进行表示,例如L(A)表示对类A进行解析
merge 合并操作的一个函数(后面具体介绍)
C 表示一个类名
B 表示是C的一个子类,如果多个子类用B1,B2....表示
+ 元素列表顺序添加
tail 去除列表第一个元素,例如 tail([1,2,3,4]) = [2,3,4]

下面是一个关键定义:

L(C) = C + merge(L(B1) + L(B2) + ...+ )

merge函数是如何合并的:

  1. 首先选中merge 函数的第一个参数(也是一个列表),按照公式里的描述就是L(B1)。
  2. 取列表中第一个元素记为h,如果h没有出现其他 列表的tail中, 那么将其移到 merge函数前,提取出来,并且将这个元素在所有列表中移除,并重复 2。
  3. 如果出现在其他列表中的 tail 中,寻找下一个列表。
  4. merge 函数所有元素都被移除类创建成功,如果寻找不到下一个列表则创建失败。

看到这里可能有点懵,下面具体举一个例子:

graph TB
X(X) -->A(A)
Y(Y) -->A(A)
X(X) -->B(B)
Y(Y) -->B(B)
A(A) -->F(F)
B(B) -->F(F)
class X():
pass class Y():
pass class A(X, Y):
pass class B(X, Y):
pass class F(A, B):
pass
print(F.__mro__)

我们来解析 F的mro顺序,则首先记为 L(F),根据

L(C) = C + merge(L(B1) + L(B2) + ...+ )

公式得到:

L(F) = F + merge(L(A)+L(B))

接下来计算L(A),与L(B):

L(A) = A + merge(L(X),L(Y)) = A + merge([X],[Y]) = [A,X,Y]
L(B) = B + merge(L(X),L(Y)) = B + merge([X],[Y]) = [B,X,Y]

带入 L(F) = L(F) + merge(L(A)+L(B)) 得到:

L(F) = F + merge([A,X,Y],[B,X,Y])

下面是关键merge逻辑理解了,首先根据 merge 的说明 1,选中得到 [A,X,Y], 根据merge的说明2,选中第一个元素 A, 判断A 是否在 tail(B,X,Y) 中,即 A 是否在 [X,Y] 中,不在,将其提出来,得到:

L(F) = F + merge([A,X,Y],[B,X,Y]) = [F,A] + merge([X,Y],[B,X,Y])

接着重复 merge的2,判断 X 是否在 tail(B,X,Y)=[X,Y] 中,结果是存在,那么寻找[X,Y]的下一个列表,即[B,X,Y],判断B 是否存在 tail([X,Y])=[Y] 中,不存在,提出B,得到:

L(F) = F + merge([A,X,Y],[B,X,Y]) = [F,A] + merge([X,Y],[B,X,Y]) = [F,A,B] + merge([X,Y],[X,Y])

剩下逻辑一样,依次提出 X和Y:

L(F) = F + merge([A,X,Y],[B,X,Y]) = [F,A] + merge([X,Y],[B,X,Y]) = [F,A,B] + merge([X,Y],[X,Y]) = [F,A,B,X,Y]

可以将我上述python代码运行一下结果和我们手算的是一样的:

(<class '__main__.F'>, <class '__main__.A'>, <class '__main__.B'>, <class '__main__.X'>, <class '__main__.Y'>, <class 'object'>)

复杂的解析(练手逻辑)

graph TB
O(O) --> C(C)
O(O) --> A(A)
O(O) --> B(B)
O(O) --> D(D)
O(O) --> E(E)
C(C) --> K1(K1)
A(A) --> K1(K1)
B(B) --> K1(K1)
A(A) --> K3(K3)
D(D) --> K3(K3)
B(B) --> K2(K2)
D(D) --> K2(K2)
E(E) --> K2(K2)
K1(K1) --> Z(Z)
K3(K3) --> Z(Z)
K2(K2) --> Z(Z)

L(K1) = K1 + merge(L(C), L(A), L(B))
= K1 + merge([C, O], [A, O], [B, O])
= [K1, C] + merge([O], [A, O], [B, O])
= [K1, C, A] + merge([O], [O], [B, O])
= [K1, C, A, B] + merge([O], [O], [O])
= [K1, C, A, B, O]
L(K2) = [K2, B,D,E, O]
L(K3) = [K3,A, D, O]
L(Z) = Z + merge(L(K1), L(K3), L(K2))
= Z + merge([K1, C, A, B, O],[K3, A, D, O],[K2, B, D, E, O])
= [Z, K1] + merge([C, A, B, O], [K3, A, D, O], [K2, B, D, E, O])
= [Z, K1, C] + merge([A, B, O], [K3, A, D, O], [K2, B, D, E, O])
= [Z K1, C] + merge([A, B, O], [K3, A, D, O], [K2, B, D,E, O])
= [Z, K1, C, K3] + merge([A, B, O], [A, D, O], [K2, B, D, E, O])
= [Z, K1, C, K3, A] + merge([B, O], [D, O], [K2, B, D, E, O])
= [Z,K1, C, K3, A, K2] + merge([B, O], [D, O], [B, D, E, O])
= [Z,K1, C, K3, A, K2, B] + merge([O], [D, O], [D, E, O])
= [Z, K1,C, K3, A, K2, B, D] + merge([O], [O], [E,O])
= [Z, K1,C, K3, A, K2, B, D, E, O]
class O:
pass class C(O):
pass class A(O):
pass class B(O):
pass class D(O):
pass class E(O):
pass class K1(C,A,B):
pass class K3(A,D):
pass class K2(B,D,E):
pass class Z(K1,K3,K2):
pass print(Z.__mro__)

其实我看到很多文章有这种写法:

L(K1) = K1 + merge(L(C), L(A), L(B),(C,A,B))

这个(C,A,B)写不写都可以,最后都是要删除的,很多国外网站文章习惯这么写,应该是便于理解。

手写一个C3 linearization 算法

理解了merge的原理,我想我可以简单实现一下这个算法,可能你已经想象到了针对 L 的函数需要用到递归实现,merge参数传递一个二维数组就可以。

class O:
pass class C(O):
pass class A(O):
pass class B(O):
pass class D(O):
pass class E(O):
pass class K1(C,A,B):
pass class K3(A,D):
pass class K2(B,D,E):
pass class Z(K1,K3,K2):
pass import copy
# merge_list 为一个二维的数组
def merge(merge_list):
index = 0
res = []
while index < len(merge_list): if "".join(["".join(i) for i in merge_list]) == "":
break
if merge_list[index] == []:
index += 1
first = merge_list[index][0]
t = copy.deepcopy(merge_list)
t.pop(index)
temp_all = "".join(["".join(i[1:]) for i in t])
if first not in temp_all:
for temp_list in merge_list:
if first in temp_list:
temp_list.remove(first)
res.append(first)
else:
index += 1
return res def L(arg_class):
if arg_class.__bases__[0].__name__ == 'object':
return [arg_class.__name__]
res = [arg_class.__name__]
res += merge([L(clss) for clss in arg_class.__bases__])
return res print(Z.__mro__)
print(L(Z))

我也没好好优化这个算法,反正能跑通,另外无法测试 错误继承,因为错误继承在类的实现的时候就会报错,为了方便测试我自己算法是否正确(看看__mro__属性就可以了),类的继承使用和python内置继承,没有自己写继承逻辑。

c3 linearization详解的更多相关文章

  1. c3算法详解

    c3 算法求某一类在多继承中的继承顺序:类的mro == [类] + [父类的继承顺序] + [父类2的继承顺序]如果从左到右的第一个类在后面的顺序中出现,那么就提取出来到mro顺序中[ABCD] + ...

  2. org.apache.log4j.Logger详解

    org.apache.log4j.Logger 详解 1. 概述 1.1. 背景 在应用程序中添加日志记录总的来说基于三个目的 :监视代码中变量的变化情况,周期性的记录到文件中供其他应用进行统计分析工 ...

  3. C#中string.format用法详解

    C#中string.format用法详解 本文实例总结了C#中string.format用法.分享给大家供大家参考.具体分析如下: String.Format 方法的几种定义: String.Form ...

  4. Log4j配置详解(转)

    一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

  5. [Java入门笔记] 面向对象编程基础(二):方法详解

    什么是方法? 简介 在上一篇的blog中,我们知道了方法是类中的一个组成部分,是类或对象的行为特征的抽象. 无论是从语法和功能上来看,方法都有点类似与函数.但是,方法与传统的函数还是有着不同之处: 在 ...

  6. Log4J日志配置详解

    一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

  7. Linux C 字符串输入函数 gets()、fgets()、scanf() 详解

    一.gets() 函数详解 gets()函数用来从 标准输入设备(键盘)读取字符串直到 回车结束,但回车符('\n')不属于这个字符串. 调用格式为: gets(str); 其中str为字符串变量(字 ...

  8. JMeter学习-023-JMeter 命令行(非GUI)模式详解(一)-执行、输出结果及日志、简单分布执行脚本

    前文 讲述了JMeter分布式运行脚本,以更好的达到预设的性能测试(并发)场景.同时,在前文的第一章节中也提到了 JMeter 命令行(非GUI)模式,那么此文就继续前文,针对 JMeter 的命令行 ...

  9. Netsuite Formula > Oracle函数列表速查(PL/SQL单行函数和组函数详解).txt

    PL/SQL单行函数和组函数详解 函数是一种有零个或多个参数并且有一个返回值的程序.在SQL中Oracle内建了一系列函数,这些函数都可被称为SQL或PL/SQL语句,函数主要分为两大类: 单行函数 ...

  10. Log4J详解

    Log4J 简介  Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

随机推荐

  1. python中使用数组作为索引

    链接:https://blog.csdn.net/yzlh2009/article/details/114118470 情况一,索引数组为整数值 情况二,索引数组为bool值

  2. 华南理工大学 Python第7章课后小测-2

    1.(单选)以下选项中使Python脚本程序转变为可执行程序的第三方库的是(本题分数:3)A) NetworkxB) pyinstallC) RequestsD) PyPDF2您的答案:B  正确率: ...

  3. Java 流处理之收集器

    Java 流(Stream)处理操作完成之后,我们可以收集这个流中的元素,使之汇聚成一个最终结果.这个结果可以是一个对象,也可以是一个集合,甚至可以是一个基本类型数据. 以记录 Record 为例: ...

  4. python 模块、原始字符串

    模块 三种方法: import from 模块 import 成员,成员 from 模块 import * *代表所有的成员 隐藏成员: 模块中以下划线_开头的属性 隐藏成员不会被from 模块 im ...

  5. 关于标签k8s训练营文章的转载声明

    该标签下的所有文章都转载自 https://www.qikqiak.com/k8strain/

  6. Kubernetes DevOps: Tekton

    Tekton 是一款功能非常强大而灵活的 CI/CD 开源的云原生框架.Tekton 的前身是 Knative 项目的 build-pipeline 项目,这个项目是为了给 build 模块增加 pi ...

  7. Python抖音视频去水印,并打包成exe可执行文件

    前言 抖音里面的视频保存之后,会发现全都带有水印,所以如何解决视频去除水印就很有必要,所以教程来了,本次教程不仅会教大家如何去除视频里的水印,并且教大家将程序制作成exe可执行文件,可以发给你的好友使 ...

  8. InnoDB关于事务、锁、MVCC专题

    目录 并发所带来的的问题 脏写 脏读 不可重复读 幻读 事务 事务的特性 事务的四种隔离级别 锁 为什么要加锁 InnoDB的七种锁 不同事务RR和RC下加锁的规则 MVCC mvcc进一步提高并发 ...

  9. CentOS 7.9 安装 kafka_2.13

    一.CentOS 7.9 安装 kafka_2.13 地址 https://kafka.apache.org/downloads.html 二.安装准备 1 安装JDK 在安装kafka之前必须先安装 ...

  10. java集合框架复习----(4)Map、List、set

    文章目录 五.Map集合[重要] 1.hashMap 六.Collections工具类 总结 集合的概念 List集合 set集合: Map集合 Collection 五.Map集合[重要] 特点: ...