H. Bang Bang Keli Ba

题目大意

给定数组 \(a\) ,构造递增序列 \(b\) 和递减序列 \(c\) 且 \(a_i=b_i+c_i\) 。

题解

下面证明解的存在性,存在性证明后,解也就出来了。

对于序列 \(b,c\) ,一个递增,一个递减就意味这 \(b\) 的差分数组 \(b'\) 每个元素都大于等于 \(0\) ,\(c\) 的差分数组 \(c'\) 每个元素都小于等于 \(0\) 。对于 \(a\) 的差分数组 \(a'\) ,我们同样有 \(a'_i=b'_i+c'_i\) ,于是对于 \(a'_i\) ,我们把它拆成一个非负数和一个非整数的和即可,显然是存在无数多的解的。

同时也有其他很多解法,在此不介绍了。

AC代码

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 1e5+5, P = 1e9+7;
int a[N], b[N], c[N]; int main() {
int n; cin>>n;
rep(i,1,n+1)cin>>a[i];
rep(i,1,n+1){
int x = a[i] - a[i-1];
if (x < 0) c[i] = x;
else b[i] = x;
b[i] += b[i-1];
c[i] += c[i-1];
}
rep(i,1,n+1)cout<<b[i]<<" \n"[i==n];
rep(i,1,n+1)cout<<c[i]<<" \n"[i==n];
return 0;
}

J. No Idea

题目大意

从 \(n\) 个数中选至少 \(2\) 个数,使这几个数的 \(\gcd\) 为 \(1\) ,问方案数。

题解

考虑容斥。定义函数 \(f(x)\) 为 \(\gcd\) 为 \(x\) 的方案数,那么答案就是 \(f(1)\) 。另外再定义一个函数 \(g(x)\) ,表示 \(\gcd\) 为 \(x\) 的倍数的方案数。根据定义,我们有

\[g(x)=f(x)+f(2x)+f(3x)+...
\]

移项得

\[f(x)=g(x)-f(2x)-f(3x)-...
\]

于是我们就可以想出这么一种解法:从大到小开始算,假设现在算到了 \(x\),我们先算出 \(g(x)\) ,那么

\(f(x)\) 就可以由上式解出。下面考虑如何计算 \(g(x)\) .

考虑这么一个组合问题:从 \(n\) 个不同的球里选不少于 \(2\) 个球的方案数。答案即为

\[\binom{n}{2}+\binom{n}{3}+...+\binom{n}{n}=2^n-\binom{n}{0}-\binom{n}{1}=2^n-1-n
\]

具体的实现方法为,用一个数组记录每个数字出现了多少次(因为数的大小最多只有 \(2\times 10^5\)),然后从 \(2\times 10^5\) 遍历到 \(1\) ,设当前遍历到了 \(i\) ,于是记录有多少个 \(i\) 的倍数,然后套上上述的组合问题即可得到 \(g(i)\) 。再减去其倍数的 \(f\) 函数值,即可得到 \(f(i)\) 。扫到 \(1\) 即可得到答案。

AC代码

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std; using ll = long long; constexpr int N = 2e5 + 5, P = 998244353;
int v[N], f[N], pw[N]; void precompute() {
pw[0] = 1;
rep(i,1,N)pw[i]=pw[i-1]*2%P;
} int main() {
precompute();
int n; cin>>n;
rep(i,0,n){
int x; cin>>x;
v[x] ++;
}
for(int i=N-1;i;i--){
int cnt = 0;
for (int j=i;j<N;j+=i)cnt+=v[j];
f[i]=(pw[cnt]-1-cnt+P)%P;
for (int j=i+i;j<N;j+=i)f[i]=(f[i]-f[j]+P)%P;
}
cout<<f[1];
return 0;
}

成都信息工程大学第八届校赛 H J 题解的更多相关文章

  1. CCCC 成都信息工程大学游记

    晚上刷智障25人本,刷到深夜四点,然后迷迷糊糊8点钟起床上车睡觉,然后就到了信息工程大学. 然后开始抢衣服,抢完衣服就开始拍照. 对了,这个学校看了下地图,好小呀,不过妹子好多呀. 然后就被老师带进机 ...

  2. PKU2018校赛 H题 Safe Upper Bound

    http://poj.openjudge.cn/practice/C18H 题目 算平均数用到公式\[\bar{x}=\frac{x_1+x_2+x_3+\cdots+x_n}{n}\] 但如果用in ...

  3. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  4. BNU校赛总决赛J 小白兔小灰兔 相交计算几何模板

    J 小白兔小灰兔 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K Special Judge, 64bit IO Format: %lld 题目描述 ...

  5. ACM学习历程—广东工业大学2016校赛决赛-网络赛E 积木积水(最值问题 || 动态规划)

    题目链接:http://gdutcode.sinaapp.com/problem.php?cid=1031&pid=4 这个题目自然会考虑到去讨论最长或者最短的板子. 笔上大概模拟一下的话,就 ...

  6. 2019湘潭校赛 H(dp)

    题目传送 dp是常规的:\(m^2\)的预处理:把位置存进vector然后\(O(1)\)算出想要的:WA点:要注意特意设置一下val[i][v.size()]=0,即全天都放鸽子则花费时间为0. # ...

  7. 广东工业大学2016校赛决赛-网络赛 1169 Problem A: Krito的讨伐 优先队列

    Problem A: Krito的讨伐 Description Krito终于干掉了99层的boss,来到了第100层.第100层可以表示成一颗树,这棵树有n个节点(编号从0到n-1),树上每一个节点 ...

  8. 南理第八届校赛同步赛-C count_prime//容斥原理

    大致思路就是先求出n的质因数假设是a1-an,然后在1-a的区间里面查找至少能整除{a1,a2...an}中一个元素的数有多少个,对1-b也做相同的处理,而找出来的元素肯定是与n不互质的,那么把区间的 ...

  9. 广州工业大学2016校赛 F 我是好人4 dfs+容斥

    Problem F: 我是好人4 Description 众所周知,我是好人!所以不会出太难的题,题意很简单 给你n个数,问你1000000000(含1e9)以内有多少个正整数不是这n个数任意一个的倍 ...

  10. 北邮校赛 H. Black-white Tree (猜的)

    H. Black-white Tree 2017- BUPT Collegiate Programming Contest - sync 时间限制 1000 ms 内存限制 65536 KB 题目描述 ...

随机推荐

  1. vue学习笔记(一) ---- vue指令(总体大纲)

    一.什么是Vue 官方文档:https://cn.vuejs.org/v2/guide/ 关键字: 渐进式框架 自底向上增量开发 视图层 单文件组件 复杂的单页应用 复杂的单页应用: 顾名思义,单页应 ...

  2. Node.js学习笔记----day05 (Promise详情)

    认真学习,认真记录,每天都要有进步呀!!! 加油叭!!! 一.回调函数 回调的含义:异步任务里面又嵌套了异步 如图: 没有使用回调之前读取文件,没有办法保证每次执行顺序都是 a--->b---& ...

  3. MD5在Python中的简单使用

    MD5不是加密 https://draveness.me/whys-the-design-password-with-md5/ 参考为什么这么设计 Message-Digest Algorithm 5 ...

  4. supervisor管理java进程

    安装 yum install supervisor 设置开机启动 systemctl enable supervisord 启动supervisord systemctl start supervis ...

  5. 新开一个系列,c++刷题集

    点开我的博客,然后选择 c++ csp 备考 标签进行筛选即可 工具采用devcpp 5.11 github地址:https://github.com/Dou-fugan/Basic-algorith ...

  6. 自动化测试如此容易!多语言自动化测试框架 Selenium 编程(C#篇)

    介绍 Selenium 官网:https://www.selenium.dev/ Selenium 是功能强大的自动化测试工具集,是支持 Web 浏览器自动化的一系列工具和库的总括项目,一共包括以下三 ...

  7. Ansible 多机自动化工具 初学笔记

    此文档仅张聪明同学个人笔记:新负责KTH-RPL Cluster GPU的漫漫学习长路 English Docs: https://docs.ansible.com/ansible/latest/in ...

  8. 代码随想录算法训练营day23 | leetcode 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树

    LeetCode 669. 修剪二叉搜索树 分析1.0 递归遍历树时删除符合条件(不在区间中)的节点-如何遍历如何删除 如果当前节点大于范围,递归左树,反之右树 当前节点不在范围内,删除它,把它的子树 ...

  9. JavaScript表单form

    form表单实例 1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset="utf-8"& ...

  10. mysql-8版本优化建议

    mysql-8版本优化 参考官方文档:https://dev.mysql.com/doc/refman/8.0/en/