本文使用深度神经网络完成计算蛋白质设计去预测20种氨基酸概率。

Introduction

针对特定结构和功能的蛋白质进行工程和设计,不仅加深了对蛋白质序列结构关系的理解,而且在化学、生物学和医学等领域都有广泛的应用。在过去的三十年里,蛋白质设计取得了显著的成功,其中一些设计是由计算方法指导的。最近一些成功的计算蛋白设计的例子包括新折叠,酶设计,疫苗,抗体,新的蛋白质组装,配体结合蛋白和膜蛋白。

Results

Networks architecture, input, and training

数据集:数据集来源于PDB且具有如下特征:
(1)用x射线晶体学确定结构;
(2)分辨率优于$$2 \r A $$;
(3)链长大于50;
(4)结构没有任何DNA/RNA分子。
移除同源蛋白质后分为三个数据集非别是30%、50%、90%(SI30,SI50,SI90)
 
输入:对于每个数据集,提取每个残基及其基于Cα-Cα距离的N(N=10、15、20、25、30)最近邻残基为聚类。
 
过程:目标残基及其领域的残基的特征作为一个input输入到残基概率网络得到目标残基的概率(图A),同时也将input输入到权重网络中得到一个权重输出(图B)。残差概率网路和权重网络本文模型架构的子网络,将这两个输出concat后输入到后续网络最终输出概率。
 
训练:线性层ReLU作为所有层的激活函数。训练采用交叉熵(categorical cross entropy )作为损失函数,采用随机梯度下降法进行优化,学习率为0.01,批处理大小为40,000,epoch是1000

Overall and amino acid specific accuracy

表 神经网络在不同邻域残基的不同数据集上的交叉验证的总体精度
Indentity cutoff
N=10
N=15
N=20
N=25
N=30
30%
0.329
$$(0.001)^*$$
0.340
$$\mathbf{(0.005)} $$
0.333
$$(0.009)$$
0.331
$$(0.006)$$
0.321
$$(0.015)$$
50%
0.353
$$(0.003) $$
0.364
$$\mathbf{(0.005)} $$
0.358
$$(0.005) $$
0.359
$$(0.006) $$
0.342
$$(0.007) $$
90%
0.367
$$(0.001) $$
0.383
$$\mathbf{(0.004)} $$
0.382
$$(0.006) $$
0.379
$$(0.007) $$
0.352
$$(0.013) $$
*括号中为标准差
正如预期的那样,由于更多的数据样本和样本之间的相似性,具有更高蛋白质确定率的数据集显示出更好的准确性。但从SI30到SI90数据集的数据样本数量几乎翻了一番,精度的提高并不显著。N=15时准确性最好,小于15时较少的相邻残基可能不足以代表目标残基的环境,而大于15时包含太多的领域残基会在输入中产生噪声。
针对总体精度最好的SI90N15分析每种氨基酸的召回率和精确度。其中Gly(甘氨酸)和Pro(脯氨酸)的召回率和准确率都较好。因为Pro具有特殊的刚性构象,而Gly在主链二面体方面具有高度的灵活性。召回、精度较低的氨基酸在训练集中的丰度通常较低,例如Met、Gln和His。
计算了每个天然氨基酸被预测为20个氨基酸的概率,并将其绘制在二维天然氨基酸和预测的热图中(如上图)。x轴和y轴上的氨基酸是根据它们的性质和彼此之间的相似性来排序的。正如预期的那样,对角线网格显示出更高的概率。有趣的是,沿着对角线有几个组,包括
网络的输出是20个氨基酸的概率在一个目标位置,除了上面提到的准确性,也可以计算top-K精度:如果源氨基酸在top-K预测(K氨基酸概率最高),预测被认为是正确的。在SI90N15数据集上训练的网络的前2、3、5和10个准确率分别达到54.3%、64.0%、76.3%和91.7%。
表 Rosetta固定主干设计在三个蛋白质有/没有残基类型约束的平均序列准确率
Protein
No-restrain*
Top 1
Top 3*
Top 5*
Top 10*
2B8I
$$0.276 \pm 0.033 $$
0.337
$$0.306 \pm 0.017$$
(0.558)
$$\mathbf{0.354 \pm 0.021} $$
(0.688)
$$0.293 \pm 0.037 $$
(0.883)
1HOE
$$0.408 \pm 0.026 $$
0.338
$$\mathbf {0.473 \pm 0.018} $$
(0.635)
$$0.441 \pm 0.018 $$
(0.689)
$$0.416 \pm 0.028 $$
(0.851)
2IGD
$$0.409 \pm 0.034$$
0.475
$$0.473 \pm 0.023 $$
(0.705)
$$0.401 \pm 0.028 $$
(0.754)
$$0.408 \pm 0.032 $$
(0.967)
应用Top-3、5和10预测限制设计三个蛋白质包括all-α蛋白(2B8I60),all-β蛋白质(1HOE61)和混合αβ蛋白(2IGD),这些蛋白质都不包含在训练集中。蛋白质的晶体结构被用作在SI90N15数据集上训练的神经网络的输入。每个位置的固定主干设计程序中的Top-3、5和10个氨基酸作为约束条件。作为对照,列出了这些蛋白质上神经网络的最高准确性,并且进行了固定主干设计(每个位置允许所有20种天然氨基酸)。由于fixbb使用了一种随机设计算法,为每个蛋白质生成了500个序列,并计算出与天然蛋白质的平均序列一致性。

PS

  1. 特征包括基本的几何和结构属性的残留,如Cα-Cα距离,主干二面体φ,ψ,ω的$$cos$$和$$sin$$的值,通过一个中心$$C_{\alpha} $$残基到领域$$C_{\alpha}$$残基的单位向量确定相邻残基和目标残基的相对位置,三种二级结构(螺旋、片状和环状),主链骨架氢键的数量,和溶剂访问骨干原子的表面积。
  1. 召回是正确预测(恢复)的原生残基的百分比,精度是正确预测的百分比。

Computational Protein Design with Deep Learning Neural Networks的更多相关文章

  1. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  2. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  3. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  4. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  5. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  6. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  7. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

    Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...

  8. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  9. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

随机推荐

  1. 什么是请求参数、表单参数、url参数、header参数、Cookie参数?一文讲懂

    最近在工作中对 http 的请求参数解析有了进一步的认识,写个小短文记录一下. 回顾下自己的情况,大概就是:有点点网络及编程基础,只需要加深一点点对 HTTP 协议的理解就能弄明白了. 先分享一个小故 ...

  2. .NET Core 读取配置技巧 - IOptions<TOptions> 接口

    原文链接:https://www.cnblogs.com/ysmc/p/16307804.html 在开发过程中,我们无法离开配置文件(appsetting.json),例如配置文件中有以下内容: { ...

  3. HMS Core AR Engine 2D图片/3D物体跟踪技术 助力打造更智能AR交互体验

    AR技术已经被广泛应用于营销.教育.游戏.展览等场景.通过2D图像跟踪技术和3D物体跟踪技术,用户只需使用一台手机进行拍摄,即可实现海报.卡牌等平面物体以及文物.手办等立体物体的AR效果.尽管近年来2 ...

  4. SQLServer2008中的Merge

    SqlServer2008 +  中的 Merge Merge:  合并   融合 SqlServer2008 中的Merge 用于匹配两种表中的数据,根据源表和目标表中的数据的比较结果对目标表进行对 ...

  5. [补漏]shift&算法

    题意:regular number 给你一个字符串,要你输出所有(每位都符合要求的)子串,输入时告诉你每位只能填的数集. 思路: bitsetc[x]存每个数字可以存在的字符串位的二进制集合.(如3可 ...

  6. 关于一些lrzsz的知识

    问题:如何从windows轻松上传文件到Linux? 方法:容器里面:apt-get update && apt-get install lrzsz 有yum的情况:yum -y in ...

  7. 13. L1,L2范数

    讲的言简意赅,本人懒,顺手转载过来:https://www.cnblogs.com/lhfhaifeng/p/10671349.html

  8. 阶段性总结 GDOI 2022 PJ

    阶段性总结 GDOI 2022 PJ 比赛经过 Day ? ~ Day -1 半停课集训,补了很多东西,但是之前漏得太多了,结果是还有很多题没改 打了若干场 AtCoder ,承认自己思维的不足,训练 ...

  9. .NET C#基础(7):接口 - 人如何和猫互动

    0. 文章目的   面向有一定基础的C#初学者,介绍C#中接口的意义.使用以及特点. 1. 阅读基础   了解C#基本语法(如定义一个类.继承一个类)   理解OOP中的基本概念(如继承,多态) 2. ...

  10. R数据分析:临床预测模型中校准曲线和DCA曲线的意义与做法

    之前给大家写过一个临床预测模型:R数据分析:跟随top期刊手把手教你做一个临床预测模型,里面其实都是比较基础的模型判别能力discrimination的一些指标,那么今天就再进一步,给大家分享一些和临 ...