本文使用深度神经网络完成计算蛋白质设计去预测20种氨基酸概率。

Introduction

针对特定结构和功能的蛋白质进行工程和设计,不仅加深了对蛋白质序列结构关系的理解,而且在化学、生物学和医学等领域都有广泛的应用。在过去的三十年里,蛋白质设计取得了显著的成功,其中一些设计是由计算方法指导的。最近一些成功的计算蛋白设计的例子包括新折叠,酶设计,疫苗,抗体,新的蛋白质组装,配体结合蛋白和膜蛋白。

Results

Networks architecture, input, and training

数据集:数据集来源于PDB且具有如下特征:
(1)用x射线晶体学确定结构;
(2)分辨率优于$$2 \r A $$;
(3)链长大于50;
(4)结构没有任何DNA/RNA分子。
移除同源蛋白质后分为三个数据集非别是30%、50%、90%(SI30,SI50,SI90)
 
输入:对于每个数据集,提取每个残基及其基于Cα-Cα距离的N(N=10、15、20、25、30)最近邻残基为聚类。
 
过程:目标残基及其领域的残基的特征作为一个input输入到残基概率网络得到目标残基的概率(图A),同时也将input输入到权重网络中得到一个权重输出(图B)。残差概率网路和权重网络本文模型架构的子网络,将这两个输出concat后输入到后续网络最终输出概率。
 
训练:线性层ReLU作为所有层的激活函数。训练采用交叉熵(categorical cross entropy )作为损失函数,采用随机梯度下降法进行优化,学习率为0.01,批处理大小为40,000,epoch是1000

Overall and amino acid specific accuracy

表 神经网络在不同邻域残基的不同数据集上的交叉验证的总体精度
Indentity cutoff
N=10
N=15
N=20
N=25
N=30
30%
0.329
$$(0.001)^*$$
0.340
$$\mathbf{(0.005)} $$
0.333
$$(0.009)$$
0.331
$$(0.006)$$
0.321
$$(0.015)$$
50%
0.353
$$(0.003) $$
0.364
$$\mathbf{(0.005)} $$
0.358
$$(0.005) $$
0.359
$$(0.006) $$
0.342
$$(0.007) $$
90%
0.367
$$(0.001) $$
0.383
$$\mathbf{(0.004)} $$
0.382
$$(0.006) $$
0.379
$$(0.007) $$
0.352
$$(0.013) $$
*括号中为标准差
正如预期的那样,由于更多的数据样本和样本之间的相似性,具有更高蛋白质确定率的数据集显示出更好的准确性。但从SI30到SI90数据集的数据样本数量几乎翻了一番,精度的提高并不显著。N=15时准确性最好,小于15时较少的相邻残基可能不足以代表目标残基的环境,而大于15时包含太多的领域残基会在输入中产生噪声。
针对总体精度最好的SI90N15分析每种氨基酸的召回率和精确度。其中Gly(甘氨酸)和Pro(脯氨酸)的召回率和准确率都较好。因为Pro具有特殊的刚性构象,而Gly在主链二面体方面具有高度的灵活性。召回、精度较低的氨基酸在训练集中的丰度通常较低,例如Met、Gln和His。
计算了每个天然氨基酸被预测为20个氨基酸的概率,并将其绘制在二维天然氨基酸和预测的热图中(如上图)。x轴和y轴上的氨基酸是根据它们的性质和彼此之间的相似性来排序的。正如预期的那样,对角线网格显示出更高的概率。有趣的是,沿着对角线有几个组,包括
网络的输出是20个氨基酸的概率在一个目标位置,除了上面提到的准确性,也可以计算top-K精度:如果源氨基酸在top-K预测(K氨基酸概率最高),预测被认为是正确的。在SI90N15数据集上训练的网络的前2、3、5和10个准确率分别达到54.3%、64.0%、76.3%和91.7%。
表 Rosetta固定主干设计在三个蛋白质有/没有残基类型约束的平均序列准确率
Protein
No-restrain*
Top 1
Top 3*
Top 5*
Top 10*
2B8I
$$0.276 \pm 0.033 $$
0.337
$$0.306 \pm 0.017$$
(0.558)
$$\mathbf{0.354 \pm 0.021} $$
(0.688)
$$0.293 \pm 0.037 $$
(0.883)
1HOE
$$0.408 \pm 0.026 $$
0.338
$$\mathbf {0.473 \pm 0.018} $$
(0.635)
$$0.441 \pm 0.018 $$
(0.689)
$$0.416 \pm 0.028 $$
(0.851)
2IGD
$$0.409 \pm 0.034$$
0.475
$$0.473 \pm 0.023 $$
(0.705)
$$0.401 \pm 0.028 $$
(0.754)
$$0.408 \pm 0.032 $$
(0.967)
应用Top-3、5和10预测限制设计三个蛋白质包括all-α蛋白(2B8I60),all-β蛋白质(1HOE61)和混合αβ蛋白(2IGD),这些蛋白质都不包含在训练集中。蛋白质的晶体结构被用作在SI90N15数据集上训练的神经网络的输入。每个位置的固定主干设计程序中的Top-3、5和10个氨基酸作为约束条件。作为对照,列出了这些蛋白质上神经网络的最高准确性,并且进行了固定主干设计(每个位置允许所有20种天然氨基酸)。由于fixbb使用了一种随机设计算法,为每个蛋白质生成了500个序列,并计算出与天然蛋白质的平均序列一致性。

PS

  1. 特征包括基本的几何和结构属性的残留,如Cα-Cα距离,主干二面体φ,ψ,ω的$$cos$$和$$sin$$的值,通过一个中心$$C_{\alpha} $$残基到领域$$C_{\alpha}$$残基的单位向量确定相邻残基和目标残基的相对位置,三种二级结构(螺旋、片状和环状),主链骨架氢键的数量,和溶剂访问骨干原子的表面积。
  1. 召回是正确预测(恢复)的原生残基的百分比,精度是正确预测的百分比。

Computational Protein Design with Deep Learning Neural Networks的更多相关文章

  1. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  2. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  3. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  4. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  5. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  6. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  7. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

    Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...

  8. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  9. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

随机推荐

  1. mui|mui.plusReady里面的函数不执行??

    无论是在本地的浏览器还是在iPhone上真机运行都出现奇怪的错误,比如说子页面样式成为乱码,无法跳转子页面等等,一开始并没有意识到是mui.plusReady的问题,后来调试时发现是plusReady ...

  2. MySQL之SQL语句优化

    语句优化 即优化器利用自身的优化器来对我们写的SQL进行优化,然后再将其放入InnoDB引擎中执行. 条件简化 移除不必要的括号 select * from x where ((a = 5)); 上面 ...

  3. mybatis中二级缓存整合ehcache实现分布式缓存

    mybatis自带二级缓存,但是这个缓存是单服务器工作,无法实现分布式缓存.那么什么是分布式缓存呢?假设现在有两个服务器1和2,用户访问的时候访问了1服务器,查询后的缓存就会放在1服务器上,假设现在有 ...

  4. java和.net 双语言开发框架,开源的PaaS平台

    当下,我国国内的PaaS平台正在蓬勃发展,各式各样的PaaS平台层出不穷,但万变不离其宗,一个优秀的PaaS平台总有自己独树一帜或与众不同的地方.那么,首先我们要了解下什么是PaaS平台?PaaS是( ...

  5. GDB的简单使用一

    GDB的简单使用一 一.概念 二.GDB的基本使用方法一 调试前预备知识 获取进程的内核转储 启动gdb调试 1.启动 2.设置断点 3.运行程序 4.显示栈帧 5.显示变量 6.显示寄存器 7.单步 ...

  6. KNN算法推理与实现

    Overview K近邻值算法 KNN (K - Nearest Neighbors) 是一种机器学习中的分类算法:K-NN是一种非参数的惰性学习算法.非参数意味着没有对基础数据分布的假设,即模型结构 ...

  7. 模块re正则

    正则表达式 内容概要 正则表达式前戏 正则表达式之字符组 正则表达式特殊符号 正则表达式量词 正则表达式贪婪与非贪婪匹配 正则表达式取消转义 python内置模块之re模块 内容详情 正则表达式前戏 ...

  8. node.js环境安装及环境变量

    1.nodejs官网下载对应系统的安装包 2.除了你想自定义安装的路径其他一切一直点next往下走 3.打开cmd命令窗口输入node -v,看到v.xx.xx代表node已经装好 node -v 4 ...

  9. 开源流程引擎camunda如何扩展

    ​  市场上基于Java语言的开源工作流引擎有:osworkflow.jbpm.activiti.flowable.camunda等,其中osworkflow.jbpm流程引擎已经过时,目前主流的开源 ...

  10. 云原生存储解决方案Rook-Ceph与Rainbond结合的实践

    基础不牢,地动山摇.无论是何种体系架构,底层存储的选择都是一个值得探讨的话题.存储承载着业务的数据,其性能直接影响到业务应用的实际表现.也正因为存储和业务的数据关联紧密,其可靠性也必须得到关注,存储的 ...