MySQL之COUNT(*)性能到底如何?
- GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
- GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。
前言
在实际开发过程中,统计一个表的数据量是经常遇到的需求,用来统计数据库表的行数都会使用COUNT(*)
,COUNT(1)
或者COUNT(字段)
,但是表中的记录越来越多,使用COUNT(*)
也会变得越来越慢,今天我们就来分析一下COUNT(*)
的性能到底如何。
1.COUNT(1)、COUNT(*)与COUNT(字段)哪个更快?
执行效果:
COUNT(*)
MySQL 对count(*)
进行了优化,count(*)
直接扫描主键索引记录,并不会把全部字段取出来,直接按行累加。COUNT(1)
InnoDB引擎遍历整张表,但不取值,server 层对于返回的每一行,放一个数字“1”进去,按行累加。COUNT(字段)
如果这个“字段”是定义为NOT NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,server 层判断不能为NULL,按行累加;如果这个“字段”定义允许为NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,然后把值取出来再判断一下,不是 NULL才累加。
实验分析
- 本文测试使用的环境:
[root@zhyno1 ~]# cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)
[root@zhyno1 ~]# uname -a
Linux zhyno1 3.10.0-1160.62.1.el7.x86_64 #1 SMP Tue Apr 5 16:57:59 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
- 测试数据库采用的是(存储引擎采用InnoDB,其它参数默认):
(Mon Jul 25 09:41:39 2022)[root@GreatSQL][(none)]>select version();
+-----------+
| version() |
+-----------+
| 8.0.25-16 |
+-----------+
1 row in set (0.00 sec)
实验开始:
#首先我们创建一个实验表
CREATE TABLE test_count (
`id` int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY,
`name` varchar(20) NOT NULL,
`salary` int(1) NOT NULL,
KEY `idx_salary` (`salary`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
#插入1000W条数据
DELIMITER //
CREATE PROCEDURE insert_1000w()
BEGIN
DECLARE i INT;
SET i=1;
WHILE i<=10000000 DO
INSERT INTO test_count(name,salary) VALUES('KAiTO',1);
SET i=i+1;
END WHILE;
END//
DELIMITER ;
#执行存储过程
call insert_1000w();
接下来我们分别来实验一下:
COUNT(1)
花费了4.19秒
(Sat Jul 23 22:56:04 2022)[root@GreatSQL][test]>select count(1) from test_count;
+----------+
| count(1) |
+----------+
| 10000000 |
+----------+
1 row in set (4.19 sec)
COUNT(*)
花费了4.16秒
(Sat Jul 23 22:57:41 2022)[root@GreatSQL][test]>select count(*) from test_count;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (4.16 sec)
COUNT(字段)
花费了4.23秒
(Sat Jul 23 22:58:56 2022)[root@GreatSQL][test]>select count(id) from test_count;
+-----------+
| count(id) |
+-----------+
| 10000000 |
+-----------+
1 row in set (4.23 sec)
我们可以再来测试一下执行计划
COUNT(*)
(Sat Jul 23 22:59:16 2022)[root@GreatSQL][test]>explain select count(*) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.01 sec)
(Sat Jul 23 22:59:48 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-----------------------------------------------------------------------+
| Note | 1003 | /* select#1 */ select count(0) AS `count(*)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)
COUNT(1)
(Sat Jul 23 23:12:45 2022)[root@GreatSQL][test]>explain select count(1) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
(Sat Jul 23 23:13:02 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-----------------------------------------------------------------------+
| Note | 1003 | /* select#1 */ select count(1) AS `count(1)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)
COUNT(字段)
(Sat Jul 23 23:13:14 2022)[root@GreatSQL][test]>explain select count(id) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
(Sat Jul 23 23:13:29 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-----------------------------------------------------------------------------------------------+
| Note | 1003 | /* select#1 */ select count(`test`.`test_count`.`id`) AS `count(id)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
需要注意的是COUNT里如果是非主键字段的话
(Tue Jul 26 14:01:57 2022)[root@GreatSQL][test]>explain select count(name) from test_count where id <100 ;
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 99 | 100.00 | Using where |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
实验结果
1.从上面的实验我们可以得出,COUNT(*)
和COUNT(1)
是最快的,其次是COUNT(id)
。
2.count(*)
被MySQL查询优化器改写成了count(0)
,并选择了idx_salary索引。
3.count(1)
和count(id)
都选择了idx_salary索引。
实验结论
总结:COUNT(*)=COUNT(1)>COUNT(id)
MySQL的官方文档也有说过:
InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no performance difference
翻译:
InnoDB以相同的方式处理SELECT COUNT(*)和SELECT COUNT(1)操作。没有性能差异
所以说明了对于COUNT(1)
或者是COUNT(*)
,MySQL的优化其实是完全一样的,没有存在没有性能的差异。
但是建议使用COUNT(*)
,因为这是MySQL92定义的标准统计行数的语法。
2.COUNT(*)与TABLES_ROWS
在InnoDB中,MySQL数据库每个表占用的空间、表记录的行数可以打开MySQL的information_schema
数据库。在该库中有一个TABLES
表,这个表主要字段分别是:
- TABLE_SCHEMA : 数据库名
- TABLE_NAME:表名
- ENGINE:所使用的存储引擎
- TABLES_ROWS:记录数
- DATA_LENGTH:数据大小
- INDEX_LENGTH:索引大小
TABLE_ROWS用于显示这个表当前有多少行,这个命令执行挺快的,那这个TABLE_ROWS能代替count(*)
吗?
我们用TABLES_ROWS查询一下表记录条数
(Sat Jul 23 23:15:14 2022)[root@GreatSQL][test]>SELECT TABLE_ROWS
-> FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_NAME = 'test_count';
+------------+
| TABLE_ROWS |
+------------+
| 9980612 |
+------------+
1 row in set (0.03 sec)
可以看到,记录的条数并不准确,因为InnoDB引擎下TABLES_ROWS行计数仅是大概估计值。
3.COUNT(*)是怎么样执行的?
首先要明确的是,MySQL有多种不同引擎,在不同的引擎中,count(*)
有不同的实现方式,本文主要介绍的是在InnoDB引擎上的执行流程
在InnoDB存储引擎中,count(*)
函数是先从内存中读取表中的数据到内存缓冲区,然后扫描全表获得行记录数的。简单来说就是全表扫描,一个循环解决问题,循环内: 先读取一行,再决定该行是否计入count
循环内是一行一行进行计数处理的。
在MyISAM引擎中是把一个表的总行数存在了磁盘上,因此执行count(*)
的时候会直接返回这个数,效率很高。
之所以InnoDB 不跟 MyISAM一样把数字存起来,是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB表应该返回多少行也是不确定的。而且不论是在事务支持、并发能力还是在数据安全方面,InnoDB都优于MyISAM。
虽然如此,InnoDB对于count(*)
操作还是做了优化的。InnoDB是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于count(*)
这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。
需要注意的是我们在这篇文章里讨论的是没有过滤条件的count(*)
,如果加了WHERE条件的话,MyISAM引擎的表也是不能返回得这么快的。
4.总结
1.
COUNT(*)=COUNT(1)>COUNT(id)
2.COUNT函数的用法,主要用于统计表行数。主要用法有
COUNT(*)、COUNT(字段)和COUNT(1)
3.因为
COUNT(*)
是SQL92定义的标准统计行数的语法,所以MySQL对他进行了很多优化,MyISAM中会直接把表的总行数单独记录下来供COUNT(*)
查询,而InnoDB则会在扫表的时候选择最小的索引来降低成本。这些优化的前提是没有进行WHERE和GROUP的条件查询。4.在InnoDB中
COUNT(*)
和COUNT(1)
实现上没有区别,而且效率一样,但是COUNT(字段)
需要进行字段的非NULL判断,所以效率会低一些。5.因为
COUNT(*)
是SQL92定义的标准统计行数的语法,并且效率高,所以还是建议使用COUNT(*)
查询表的行数。6.正如前面
COUNT(name)
的用例那样,在建表过程中需要根据业务需求建立性能较高的索引,同时也要注意避免建立不必要的索引。
最后多说一嘴,本文内容可能存在一些用例不够全面,如有不同见解,欢迎后台留言讨论。
Enjoy GreatSQL
文章推荐:
面向金融级应用的GreatSQL正式开源
https://mp.weixin.qq.com/s/cI_wPKQJuXItVWpOx_yNTg
Changes in GreatSQL 8.0.25 (2021-8-18)
https://mp.weixin.qq.com/s/qcn0lmsMoLtaGO9hbpnhVg
MGR及GreatSQL资源汇总
https://mp.weixin.qq.com/s/qXMct_pOVN5FGoLsXSD0MA
GreatSQL MGR FAQ
https://mp.weixin.qq.com/s/J6wkUpGXw3YkyEUJXiZ9xA
在Linux下源码编译安装GreatSQL/MySQL
https://mp.weixin.qq.com/s/WZZOWKqSaGSy-mpD2GdNcA
关于 GreatSQL
GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。
Gitee:
https://gitee.com/GreatSQL/GreatSQL
GitHub:
https://github.com/GreatSQL/GreatSQL
Bilibili:
https://space.bilibili.com/1363850082/video
微信&QQ群:
可搜索添加GreatSQL社区助手
微信好友,发送验证信息“加群”加入GreatSQL/MGR交流微信群
QQ群:533341697
微信小助手:wanlidbc
本文由博客一文多发平台 OpenWrite 发布!
MySQL之COUNT(*)性能到底如何?的更多相关文章
- MySQL的count(*)性能怎么样?
对于count(主键id)来说,innodb引擎会遍历整张表,把每一行的id值都取出来,返回给server层,server层判断id值不为空,就按行累加 对于count(1)来说,innodb引擎遍历 ...
- 图解MySQL:count(*) 、count(1) 、count(主键字段)、count(字段)哪个性能最好?
大家好,我是小林. 当我们对一张数据表中的记录进行统计的时候,习惯都会使用 count 函数来统计,但是 count 函数传入的参数有很多种,比如 count(1).count(*).count(字段 ...
- MySQL之查询性能优化(四)
优化特定类型的查询 COUNT()的作用 COUNT()是一个特殊函数,有两个非常不同的作用:它可以统计某个列值的数量,也可以统计行数.在统计列值时要求列值是非空的(不统计NULL). 如果在COUN ...
- MySQL中count函数使用方法详解
count函数是用来统计表中或数组中记录的一个函数,下面我来介绍在MySQL中count函数用法与性能比较吧. count(*) 它返回检索行的数目, 不论其是否包含 NULL值. SELECT ...
- MySQL的COUNT()函数理解
MySQL的COUNT()函数理解 标签(空格分隔): MySQL5.7 COUNT()函数 探讨 写在前面的话 细心的朋友会在平时工作和学习中,可以看到MySQL的COUNT()函数有多种不同的参数 ...
- mysql的sql性能分析器
MySQL 的SQL性能分析器主要用途是显示SQL执行的整个过程中各项资源的使用情况.分析器可以更好的展示出不良SQL的性能问题所在. mysql sql profile的使用方法 1.开启mysql ...
- 一起看下MySQL的崩溃恢复到底是怎么回事
目录 回顾 思考一个问题 checkponit机制 Checkpoint的种类及触发条件 LSN 推荐阅读 本文稍微有点晦涩.但是看过之后你就能Get到MySQL的崩溃恢复到底是怎么做的! 文章公号 ...
- MySQL 中 count(*) 和 count(1)
一张有 100W 条数据的表 CREATE TABLE `user` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `username` var ...
- MySql的count统计结果
起因:最近在学习mysql的数据库,发现在innodb表中大数据量下count(*)的统计结果实在是太慢,所以想找个办法替代这种查询,下面分享一下我查找的过程. 实践:在给出具体的结论之前,我们先看看 ...
随机推荐
- README.exe 是的,你看错是EXE
SmartIDE让你的README变成可执行文档,再也不用编写无用的文档,再也不必操心环境问题. 作为开发者,拿到一个新的代码库的时候一般都会先去看README文件,通过这个文件可以知道这套代码所 ...
- 【JNPF修改通告】fastjson≤1.2.80反序列化漏洞
近日Fastjson Develop Team 发现 fastjson 1.2.80及以下存在新的风险,存在反序列化漏洞.攻击者可绕过默认autoType关闭限制,攻击远程服务器,风险影响较大,请大家 ...
- bare Git 仓库是什么?
背景 今天,坐我旁边的同事问我一些关于服务器上命令的问题.其中有一个用了特殊参数的 git init 的命令,我也不认识,遂去 Google... bare Git 仓库 定义 A bare Git ...
- 第1章 C++绪论
写于2022年5月13日: 开通博客用于学习记录分享及交流. C++复习笔记内容参考教材[双语版C++程序设计(第2版)][(爱尔兰)Paul Kelly(P. 凯利),苏小红]. 本书的网站:htt ...
- 覆盖率检查工具:JaCoCo 食用指南
一:概述 众所周知,软件的代码覆盖率是衡量软件质量的重要指标, 我们今天简单介绍 JaCoCo 的实际使用示例,它是目前在大多数 Java 项目中应用最广泛的覆盖率检测框架 更多资料参考:JaCoCo ...
- JS:条件语句2
1.for循环:循环代码块一定的次数 例: for(var i = 0;i<5;i++){ console.log(i); } // 0 1 2 3 4 遍历对象: var arr=[" ...
- Servlet 之 Http协议
请求消息数据格式 请求行 请求方式 请求url 请求协议或者版本 (GET /login.html HTTP/1.1) 请求头 请求头名称:请求头值 多个用逗号分隔 请求空行 空行分隔作 ...
- 手把手教你实现在Monaco Editor中使用VSCode主题
背景 笔者开源了一个小项目code-run,类似codepen的一个工具,其中代码编辑器使用的是微软的Monaco Editor,这个库是直接从VSCode的源码中生成的,只不过是做了一点修改让它支持 ...
- 11.2 Android Studio如何切换主题和更改字体
如何进入设置? 全平台启动界面 Configure-Preferences 主界面 Windows版本:File-Settings Mac版本:Android Studio-Preferences 外 ...
- Codeforces Round #789 (Div. 2) A-C
Codeforces Round #789 (Div. 2) A-C A 题目 https://codeforces.com/problemset/problem/1677/A 题解 思路 知识点:模 ...