• GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
  • GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。

前言

在实际开发过程中,统计一个表的数据量是经常遇到的需求,用来统计数据库表的行数都会使用COUNT(*)COUNT(1)或者COUNT(字段),但是表中的记录越来越多,使用COUNT(*)也会变得越来越慢,今天我们就来分析一下COUNT(*)的性能到底如何。

1.COUNT(1)、COUNT(*)与COUNT(字段)哪个更快?

执行效果:

  • COUNT(*)MySQL 对count(*)进行了优化,count(*)直接扫描主键索引记录,并不会把全部字段取出来,直接按行累加。
  • COUNT(1)InnoDB引擎遍历整张表,但不取值,server 层对于返回的每一行,放一个数字“1”进去,按行累加。
  • COUNT(字段)如果这个“字段”是定义为NOT NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,server 层判断不能为NULL,按行累加;如果这个“字段”定义允许为NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,然后把值取出来再判断一下,不是 NULL才累加。

实验分析


  • 本文测试使用的环境:
[root@zhyno1 ~]# cat /etc/system-release
CentOS Linux release 7.9.2009 (Core) [root@zhyno1 ~]# uname -a
Linux zhyno1 3.10.0-1160.62.1.el7.x86_64 #1 SMP Tue Apr 5 16:57:59 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
  • 测试数据库采用的是(存储引擎采用InnoDB,其它参数默认):
(Mon Jul 25 09:41:39 2022)[root@GreatSQL][(none)]>select version();
+-----------+
| version() |
+-----------+
| 8.0.25-16 |
+-----------+
1 row in set (0.00 sec)

实验开始:

#首先我们创建一个实验表

CREATE TABLE test_count (
`id` int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY,
`name` varchar(20) NOT NULL,
`salary` int(1) NOT NULL,
KEY `idx_salary` (`salary`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8; #插入1000W条数据
DELIMITER //
CREATE PROCEDURE insert_1000w()
BEGIN
DECLARE i INT;
SET i=1;
WHILE i<=10000000 DO
INSERT INTO test_count(name,salary) VALUES('KAiTO',1);
SET i=i+1;
END WHILE;
END//
DELIMITER ; #执行存储过程
call insert_1000w();

接下来我们分别来实验一下:

  • COUNT(1)花费了4.19秒
(Sat Jul 23 22:56:04 2022)[root@GreatSQL][test]>select count(1) from test_count;
+----------+
| count(1) |
+----------+
| 10000000 |
+----------+
1 row in set (4.19 sec)
  • COUNT(*)花费了4.16秒
(Sat Jul 23 22:57:41 2022)[root@GreatSQL][test]>select count(*) from test_count;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (4.16 sec)
  • COUNT(字段)花费了4.23秒
(Sat Jul 23 22:58:56 2022)[root@GreatSQL][test]>select count(id) from test_count;
+-----------+
| count(id) |
+-----------+
| 10000000 |
+-----------+
1 row in set (4.23 sec)

我们可以再来测试一下执行计划

  • COUNT(*)
(Sat Jul 23 22:59:16 2022)[root@GreatSQL][test]>explain select count(*) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.01 sec) (Sat Jul 23 22:59:48 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-----------------------------------------------------------------------+
| Note | 1003 | /* select#1 */ select count(0) AS `count(*)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)
  • COUNT(1)
(Sat Jul 23 23:12:45 2022)[root@GreatSQL][test]>explain select count(1) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec) (Sat Jul 23 23:13:02 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-----------------------------------------------------------------------+
| Note | 1003 | /* select#1 */ select count(1) AS `count(1)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)
  • COUNT(字段)
(Sat Jul 23 23:13:14 2022)[root@GreatSQL][test]>explain select count(id) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec) (Sat Jul 23 23:13:29 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------------------------------+
| Level | Code | Message |
+-------+------+-----------------------------------------------------------------------------------------------+
| Note | 1003 | /* select#1 */ select count(`test`.`test_count`.`id`) AS `count(id)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

需要注意的是COUNT里如果是非主键字段的话

(Tue Jul 26 14:01:57 2022)[root@GreatSQL][test]>explain select count(name) from test_count where id <100 ;
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | test_count | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 99 | 100.00 | Using where |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

实验结果

1.从上面的实验我们可以得出,COUNT(*)COUNT(1)是最快的,其次是COUNT(id)

2.count(*)被MySQL查询优化器改写成了count(0),并选择了idx_salary索引。

3.count(1)count(id)都选择了idx_salary索引。

实验结论

总结:COUNT(*)=COUNT(1)>COUNT(id)

MySQL的官方文档也有说过:

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no performance difference

翻译:

InnoDB以相同的方式处理SELECT COUNT(*)和SELECT COUNT(1)操作。没有性能差异

所以说明了对于COUNT(1)或者是COUNT(*),MySQL的优化其实是完全一样的,没有存在没有性能的差异。

但是建议使用COUNT(*),因为这是MySQL92定义的标准统计行数的语法。

2.COUNT(*)与TABLES_ROWS

在InnoDB中,MySQL数据库每个表占用的空间、表记录的行数可以打开MySQL的information_schema数据库。在该库中有一个TABLES表,这个表主要字段分别是:

  • TABLE_SCHEMA : 数据库名
  • TABLE_NAME:表名
  • ENGINE:所使用的存储引擎
  • TABLES_ROWS:记录数
  • DATA_LENGTH:数据大小
  • INDEX_LENGTH:索引大小

TABLE_ROWS用于显示这个表当前有多少行,这个命令执行挺快的,那这个TABLE_ROWS能代替count(*)吗?

我们用TABLES_ROWS查询一下表记录条数

(Sat Jul 23 23:15:14 2022)[root@GreatSQL][test]>SELECT TABLE_ROWS
-> FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_NAME = 'test_count';
+------------+
| TABLE_ROWS |
+------------+
| 9980612 |
+------------+
1 row in set (0.03 sec)

可以看到,记录的条数并不准确,因为InnoDB引擎下TABLES_ROWS行计数仅是大概估计值。

3.COUNT(*)是怎么样执行的?

首先要明确的是,MySQL有多种不同引擎,在不同的引擎中,count(*)有不同的实现方式,本文主要介绍的是在InnoDB引擎上的执行流程

在InnoDB存储引擎中,count(*)函数是先从内存中读取表中的数据到内存缓冲区,然后扫描全表获得行记录数的。简单来说就是全表扫描,一个循环解决问题,循环内: 先读取一行,再决定该行是否计入count循环内是一行一行进行计数处理的。

在MyISAM引擎中是把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高。

之所以InnoDB 不跟 MyISAM一样把数字存起来,是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB表应该返回多少行也是不确定的。而且不论是在事务支持、并发能力还是在数据安全方面,InnoDB都优于MyISAM。

虽然如此,InnoDB对于count(*)操作还是做了优化的。InnoDB是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于count(*)这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。

需要注意的是我们在这篇文章里讨论的是没有过滤条件的count(*),如果加了WHERE条件的话,MyISAM引擎的表也是不能返回得这么快的。

4.总结

  • 1.COUNT(*)=COUNT(1)>COUNT(id)

  • 2.COUNT函数的用法,主要用于统计表行数。主要用法有COUNT(*)、COUNT(字段)和COUNT(1)

  • 3.因为COUNT(*)是SQL92定义的标准统计行数的语法,所以MySQL对他进行了很多优化,MyISAM中会直接把表的总行数单独记录下来供COUNT(*)查询,而InnoDB则会在扫表的时候选择最小的索引来降低成本。这些优化的前提是没有进行WHERE和GROUP的条件查询。

  • 4.在InnoDB中COUNT(*)COUNT(1)实现上没有区别,而且效率一样,但是COUNT(字段)需要进行字段的非NULL判断,所以效率会低一些。

  • 5.因为COUNT(*)是SQL92定义的标准统计行数的语法,并且效率高,所以还是建议使用COUNT(*)查询表的行数。

  • 6.正如前面COUNT(name)的用例那样,在建表过程中需要根据业务需求建立性能较高的索引,同时也要注意避免建立不必要的索引。

最后多说一嘴,本文内容可能存在一些用例不够全面,如有不同见解,欢迎后台留言讨论。


Enjoy GreatSQL

文章推荐:

面向金融级应用的GreatSQL正式开源

https://mp.weixin.qq.com/s/cI_wPKQJuXItVWpOx_yNTg

Changes in GreatSQL 8.0.25 (2021-8-18)

https://mp.weixin.qq.com/s/qcn0lmsMoLtaGO9hbpnhVg

MGR及GreatSQL资源汇总

https://mp.weixin.qq.com/s/qXMct_pOVN5FGoLsXSD0MA

GreatSQL MGR FAQ

https://mp.weixin.qq.com/s/J6wkUpGXw3YkyEUJXiZ9xA

在Linux下源码编译安装GreatSQL/MySQL

https://mp.weixin.qq.com/s/WZZOWKqSaGSy-mpD2GdNcA

关于 GreatSQL

GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。

Gitee:

https://gitee.com/GreatSQL/GreatSQL

GitHub:

https://github.com/GreatSQL/GreatSQL

Bilibili:

https://space.bilibili.com/1363850082/video

微信&QQ群:

可搜索添加GreatSQL社区助手微信好友,发送验证信息“加群”加入GreatSQL/MGR交流微信群

QQ群:533341697

微信小助手:wanlidbc

本文由博客一文多发平台 OpenWrite 发布!

MySQL之COUNT(*)性能到底如何?的更多相关文章

  1. MySQL的count(*)性能怎么样?

    对于count(主键id)来说,innodb引擎会遍历整张表,把每一行的id值都取出来,返回给server层,server层判断id值不为空,就按行累加 对于count(1)来说,innodb引擎遍历 ...

  2. 图解MySQL:count(*) 、count(1) 、count(主键字段)、count(字段)哪个性能最好?

    大家好,我是小林. 当我们对一张数据表中的记录进行统计的时候,习惯都会使用 count 函数来统计,但是 count 函数传入的参数有很多种,比如 count(1).count(*).count(字段 ...

  3. MySQL之查询性能优化(四)

    优化特定类型的查询 COUNT()的作用 COUNT()是一个特殊函数,有两个非常不同的作用:它可以统计某个列值的数量,也可以统计行数.在统计列值时要求列值是非空的(不统计NULL). 如果在COUN ...

  4. MySQL中count函数使用方法详解

      count函数是用来统计表中或数组中记录的一个函数,下面我来介绍在MySQL中count函数用法与性能比较吧. count(*) 它返回检索行的数目, 不论其是否包含 NULL值. SELECT ...

  5. MySQL的COUNT()函数理解

    MySQL的COUNT()函数理解 标签(空格分隔): MySQL5.7 COUNT()函数 探讨 写在前面的话 细心的朋友会在平时工作和学习中,可以看到MySQL的COUNT()函数有多种不同的参数 ...

  6. mysql的sql性能分析器

    MySQL 的SQL性能分析器主要用途是显示SQL执行的整个过程中各项资源的使用情况.分析器可以更好的展示出不良SQL的性能问题所在. mysql sql profile的使用方法 1.开启mysql ...

  7. 一起看下MySQL的崩溃恢复到底是怎么回事

    目录 回顾 思考一个问题 checkponit机制 Checkpoint的种类及触发条件 LSN 推荐阅读 本文稍微有点晦涩.但是看过之后你就能Get到MySQL的崩溃恢复到底是怎么做的! 文章公号 ...

  8. MySQL 中 count(*) 和 count(1)

    一张有 100W 条数据的表 CREATE TABLE `user` (  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,  `username` var ...

  9. MySql的count统计结果

    起因:最近在学习mysql的数据库,发现在innodb表中大数据量下count(*)的统计结果实在是太慢,所以想找个办法替代这种查询,下面分享一下我查找的过程. 实践:在给出具体的结论之前,我们先看看 ...

随机推荐

  1. 从MySQL全备文件中恢复单个库或者单个表

    从MySQL全备文件中恢复单个库或者单个表 提取建库语句 sed -n '/^-- Current Database: db_cms/,/^-- Current Database: `/p' back ...

  2. 【摸鱼神器】UI库秒变LowCode工具——列表篇(一)设计与实现

    内容摘要: 需求分析 定义 interface 定义 json 文件 定义列表控件的 props 基于 el-table 封装,实现依赖 json 渲染 实现内置功能:选择行(单选.多选),格式化.锁 ...

  3. 六、LVM和从磁盘配额

    一.LVM概述 Logical Volume Manager,逻辑卷管理 优点:能够保证在现有数据不变的情况下,动态调整磁盘容量,从而提高磁盘管理的灵活性 /boot分区用于存放引导文件,不能基于LV ...

  4. 【主流技术】ElasticSearch 在 Spring 项目中的实践

    前言 ElasticSearch简称es,是一个开源的高扩展的分布式全文检索引擎. 它可以近乎实时的存储.检索数据,其扩展性很好,ElasticSearch是企业级应用中较为常见的技术. 下面和大家分 ...

  5. 在VMware Workstation 16上安装Windows7虚拟机以及VMware tools安装失败解决方法

    安装VMware Workstation 16 搜素"VMware Workstation下载" 下载 VMware Workstation Pro 下载Windows7系统镜像 ...

  6. UiPath邮件自动化

    在UiPath中下载Outlook电子邮件附件Outlook电子邮件自动化教程UiPathRPAhttps://www.bilibili.com/video/BV1oK411L72T 在UiPath中 ...

  7. NC17400 gpa

    NC17400 gpa 题目 题目描述 Kanade selected n courses in the university. The academic credit of the i-th cou ...

  8. CSS基本知识点——带你走进CSS的新世界

    CSS基本知识点 我们在学习HTML之后,前端三件套第二件便是CSS,但CSS内容较多,我们分几部分讲解: (如果没有学习HTML,请参考之前文章:HTML知识点概括--一篇文章带你完全掌握HTML& ...

  9. dubbox 入门demo

    1.Dubbox简介 Dubbox 是一个分布式服务架构,其前身是阿里巴巴开源项目 Dubbo,被国内电商及互联网项目使用,后期阿里巴巴停止了该项目的维护,当当网便在 Dubbo 基础上进行优化,并继 ...

  10. 华为Mate14上安装Ubuntu20.04纪要

    Ubuntu16.04用了将近五年了,已经好几年没折腾过系统,所以简要记录一下.   1. 关于UEFI分区,之前的笔记本UEFI是可选的(只是默认该模式),Bios里面还有其他选项.一般安装系统之前 ...