Python图像处理丨三种实现图像形态学转化运算模式
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算、图像闭运算和梯度运算
本文分享自华为云社区《[Python图像处理] 九.形态学之图像开运算、闭运算、梯度运算》,作者:eastmount。
数学形态学(Mathematical morphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:腐蚀和膨胀、开运算和闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等。
本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算、图像闭运算和梯度运算,基础性知识希望对您有所帮助。
- 1.图像开运算
- 2.图像闭运算
- 3.图像梯度运算
一. 图像开运算
1.基本原理
图像开运算是图像依次经过腐蚀、膨胀处理后的过程。图像被腐蚀后,去除了噪声,但是也压缩了图像;接着对腐蚀过的图像进行膨胀处理,可以去除噪声,并保留原有图像。如下图所示:
开运算(img) = 膨胀( 腐蚀(img) )
下图是hanshanbuleng博主提供的开运算效果图,推荐大家学习他的文章。
https://blog.csdn.net/hanshanbuleng/article/details/80657148
2.函数原型
图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_OPEN对应开运算。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)
参数dst表示处理的结果,src表示原图像,cv2.MORPH_OPEN表示开运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。
运行结果如下图所示:
3.代码实现
完整代码如下所示:
- #encoding:utf-8
- import cv2
- import numpy as np
- #读取图片
- src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)
- #设置卷积核
- kernel = np.ones((5,5), np.uint8)
- #图像开运算
- result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)
- #显示图像
- cv2.imshow("src", src)
- cv2.imshow("result", result)
- #等待显示
- cv2.waitKey(0)
- cv2.destroyAllWindows()
输出结果如下图所示,可以看到噪声已经被去除了。
但是结果result中仍然有部分噪声,如果想去除更彻底将卷积设置为10*10的。
kernel = np.ones((10,10), np.uint8)
result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)
二. 图像闭运算
1.基本原理
图像闭运算是图像依次经过膨胀、腐蚀处理后的过程。图像先膨胀,后腐蚀,它有助于关闭前景物体内部的小孔,或物体上的小黑点。如下图所示:
闭运算(img) = 腐蚀( 膨胀(img) )
下图是hanshanbuleng博主提供的开运算效果图,推荐大家学习他的文章。
2.函数原型
图像闭运算主要使用的函数morphologyEx,其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)
参数dst表示处理的结果,src表示原图像, cv2.MORPH_CLOSE表示闭运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。
运行结果如下图所示:
3.代码实现
完整代码如下所示:
- #encoding:utf-8
- import cv2
- import numpy as np
- #读取图片
- src = cv2.imread('test03.png', cv2.IMREAD_UNCHANGED)
- #设置卷积核
- kernel = np.ones((10,10), np.uint8)
- #图像闭运算
- result = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)
- #显示图像
- cv2.imshow("src", src)
- cv2.imshow("result", result)
- #等待显示
- cv2.waitKey(0)
- cv2.destroyAllWindows()
输出结果如下图所示,可以看到中间的噪声去掉。
三. 图像梯度运算
1.基本原理
图像梯度运算是膨胀图像减去腐蚀图像的结果,得到图像的轮廓,其中二值图像1表示白色点,0表示黑色点。如下图所示:
梯度运算(img) = 膨胀(img) - 腐蚀(img)
2.函数原型
图像梯度运算主要使用的函数morphologyEx,参数为cv2.MORPH_GRADIENT。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)
参数dst表示处理的结果,src表示原图像, cv2.MORPH_GRADIENT表示梯度运算,kernel表示卷积核。5*5的卷积核可以采用函数 np.ones((5,5), np.uint8) 构建。
运行结果如下图所示:
3.代码实现
完整代码如下所示:
- #encoding:utf-8
- import cv2
- import numpy as np
- #读取图片
- src = cv2.imread('test04.png', cv2.IMREAD_UNCHANGED)
- #设置卷积核
- kernel = np.ones((10,10), np.uint8)
- #图像闭运算
- result = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)
- #显示图像
- cv2.imshow("src", src)
- cv2.imshow("result", result)
- #等待显示
- cv2.waitKey(0)
- cv2.destroyAllWindows()
输出结果如下图所示,可以看到中间的噪声去掉。
该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python
本文摘录自eastmount X华为云开发者社区联合出品的电子书《从零到一 • Python图像处理及识别》。点击免费下载电子书《从零到一 • Python图像处理及识别》
Python图像处理丨三种实现图像形态学转化运算模式的更多相关文章
- Python图像处理丨带你认识图像量化处理及局部马赛克特效
摘要:本文主要讲述如何进行图像量化处理和采样处理及局部马赛克特效. 本文分享自华为云社区<[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效>,作者: eastmoun ...
- python中的三种输入方式
python中的三种输入方式 python2.X python2.x中以下三个函数都支持: raw_input() input() sys.stdin.readline() raw_input( )将 ...
- python—字符串拼接三种方法
python—字符串拼接三种方法 1.使用加号(+)号进行拼接 字符串拼接直接进行相加就可以,比较容易理解,但是一定要记得,变量直接相加,不是变量就要用引号引起来,不然会出错,另外数字是要转换为字 ...
- Python图像处理丨图像腐蚀与图像膨胀
摘要:本篇文章主要讲解Python调用OpenCV实现图像腐蚀和图像膨胀的算法. 本文分享自华为云社区<[Python图像处理] 八.图像腐蚀与图像膨胀>,作者: eastmount . ...
- Python图像处理丨基于OpenCV和像素处理的图像灰度化处理
摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...
- 跟我学Python图像处理丨何为图像的灰度非线性变换
摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...
- Python图像处理丨认识图像锐化和边缘提取的4个算子
摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...
- 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样
摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...
- 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算
摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...
随机推荐
- css盒子模型简析
盒子模型分为标准盒子模型和怪异的盒子模型 1.标准的盒模型 (content-box) 你设置的宽和高(width/height)是内容的部分宽高,所以盒子的实际宽度=内容的宽高+boder+padd ...
- esp8266 esp01s wifi继电器 初步点灯成功!艰难的历程啊,期间差点烧了
0x00 前言说明 放假这几天,在淘宝买了esp01s,和一个搭配esp01s的wifi继电器准备做一些IOT(物联网)实验,踩了不少的坑,总算是点灯成功了!下面记录一些实验的拍照吧~ 继电器参数说明 ...
- mybaitis查询 (数据库与实体类字段名不相同)
1.这是我的数据库字段名和实体类字段名 2.方法 方法一: 查询的结果标题 会跟实体类的属性一一匹配,一定要一致就算数据库字段和属性不一致,我们可以把查询结果设置一个别名,让别名=属性名 方法二:使用 ...
- kvm 虚拟化技术 1.1 安装
1.·VMware开启虚拟化设置 2.安装一些虚拟化的必备插件 yum install -y qemu-kvm qemu-kvm-tools libvirt virt-manager virt-ins ...
- 【mq】从零开始实现 mq-12-消息的批量发送与回执
前景回顾 [mq]从零开始实现 mq-01-生产者.消费者启动 [mq]从零开始实现 mq-02-如何实现生产者调用消费者? [mq]从零开始实现 mq-03-引入 broker 中间人 [mq]从零 ...
- .net 获取IP地址的几种方式
1.获取服务器IP地址: 1) Local_Addr var Local_Addr = Request.ServerVariables.Get("Local_Addr").ToSt ...
- 20212115 实验三 《python程序设计》实验报告
实验报告 20212115<python程序设计>实验三报告 课程:<Python程序设计>班级: 2121姓名: 朱时鸿学号:20212115实验教师:王志强老师实验日期:2 ...
- poj3784(对顶堆)
题意:多组数据,让你求出1~i(i为奇数&&i<=n)的中位数 思路:首先复杂度必为O(n)或O(nlogn)的(数据范围) 思索,如果题目要求1次中位数,好求!排个序,取a[( ...
- 小样本利器1.半监督一致性正则 Temporal Ensemble & Mean Teacher代码实现
这个系列我们用现实中经常碰到的小样本问题来串联半监督,文本对抗,文本增强等模型优化方案.小样本的核心在于如何在有限的标注样本上,最大化模型的泛化能力,让模型对unseen的样本拥有很好的预测效果.之前 ...
- python基础学习10
python基础学习 内容概要 文件内光标的移动 文件数据修改 函数简介 函数语法结构 内容详情 文件内光标的移动 with open(r'路径','r',encoding='utf8') as f: ...