Description

有 \(Q\) 个询问。每次给定一个正整数 \(n\),求它的所有因数的质因数个数的和。


Solution

就讲中间的一个 Trick。

我们定义正整数 \(x\) 有 \(f(x)\) 个因数,且存在一函数 \(g(x) = \sum_{i | x} f^3(i)\),显然 \(g(x)\) 即 \(x\) 对应的答案。

那么,若 \(x = p^a\),则由因数个数定理可得: \(f(x) = a + 1\)。

且其因数集合可表示为:\(\{p^0, p^1, ... , p^a\}\)。故有 \(g(x) = \sum_{i = 0}^{a} f^3(p^i) = \sum_{i = 0}^{a} (i + 1)^3\)。

将 \(x\) 的范围加以推广。

若 \(x = p^a q^b\),则 \(f(x) = (a + 1) \times (b + 1)\)。

且其因数集合可表示为:\(\{\{p^0 q^0, p^0 q^1, ..., p^0 q^b\}, \{p^1 q^0, p^1 q^1, ..., p^1 q^b\}, ... , \{p^a q^0, p^a q^1, ..., p^a q^b\}\}\)。故有 \(g(x) = \sum_{i = 0}^{a}\sum_{j = 0}^{b} f^3(p^i q^j) = \sum_{i = 0}^{a}\sum_{j = 0}^{b} (i + 1)^3 (j + 1)^3\)。

注意到 \(g(p^a) = \sum_{i = 0}^{a} (i + 1)^3, g(q^b) = \sum_{j = 0}^{b} (j + 1)^3\)。

所以有 \(g(x) = g(p^a q^b) = g(p^a) \times g(q^b)\)。显然可推广至结论:

\[g(x) = g(p_1^{a_1} p_2^{a_2} ... p_k^{a_k}) = \prod_{i = 1}^{k} g(p_i^{a_i})
\]

然后就可以当结论题切掉它。


Code

#include <cstdio>

typedef long long LL;
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; }
int Abs(int x) { return x < 0 ? -x : x; } int read() {
int k = 1, x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
} void write(LL x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
} void print(LL x, char s) {
write(x);
putchar(s);
} const int MAXN = 5e6 + 5; bool flag[MAXN];
int num[MAXN], len = 0;
LL w[MAXN]; void Euler(int n) {
flag[1] = true;
for (int i = 2; i <= n; i++) {
if (!flag[i])
num[++len] = i;
for (int j = 1; j <= len; j++) {
if (i * num[j] > n)
break;
flag[i * num[j]] = true;
if (i % num[j] == 0)
break;
}
}
} int main() {
Euler(MAXN - 5);
for (int i = 1; i < 23; i++)
for (int j = 0; j <= i; j++) w[i] += (1 + j) * (1 + j) * (1 + j);
int n = read();
for (int i = 1, x; i <= n; i++) {
x = read();
LL res = 1;
for (int j = 1; num[j] * num[j] <= x; j++) {
int cnt = 0;
while (x % num[j] == 0) {
x /= num[j];
cnt++;
}
res *= w[cnt];
}
if (x > 1)
res *= w[1];
print(res, '\n');
}
return 0;
}

Solution -「HDU」Professor Ben的更多相关文章

  1. Solution -「构造」专练

    记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数 ...

  2. Solution -「原创」Destiny

    题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他 ...

  3. Solution -「HDU 6875」Yajilin

    \(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...

  4. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  5. Solution -「HDU 6643」Ridiculous Netizens

    \(\mathcal{Description}\)   Link.   给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...

  6. Solution -「HDU 1788」CRT again

    \(\mathcal{Description}\)   Link.   解同余方程组: \[x\equiv m_i-a\pmod{m_i} \]   其中 \(i=1,2,\dots,n\).   \ ...

  7. Solution -「HDU #6566」The Hanged Man

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...

  8. Solution -「LOCAL」「cov. HDU 6864」找朋友

    \(\mathcal{Description}\)   Link.(几乎一致)   给定 \(n\) 个点 \(m\) 条边的仙人掌和起点 \(s\),边长度均为 \(1\).令 \(d(u)\) 表 ...

  9. Solution -「LOCAL」「cov. HDU 6816」折纸游戏

    \(\mathcal{Description}\)   Link(削弱版).   \(n\) 张纸叠在一起对折 \(k\) 次,然后从上到下为每层的正反两面写上数字,求把纸重新摊平后每张纸上的数字序列 ...

随机推荐

  1. [笔记] K-D Tree

    一种可以 高效处理 \(k\) 维空间信息 的数据结构. 在正确使用的情况下,复杂度为 \(O(n^{1-\frac{1}{k}})\). K-D Tree 的实现 建树 随机一维选择最中间的点为当前 ...

  2. 干货长文:Linux 文件系统与持久性内存介绍

    关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 1.Linux 虚拟文件系统介绍 在 Linux 系统中一切皆文件,除了通常所说的狭义的文件以 ...

  3. 利用expect批量修改Linux服务器密码

    一个执着于技术的公众号 背景 修改Linux系统密码,执行passwd即可更改密码.可如果有成千上百台服务器呢,通过ssh的方式逐一进行修改,对我们来说,工作量是非常大,且效率非常低下.因此采用批量修 ...

  4. Springcloud及Git线上配置详解

    SpringCloud 这个阶段该如何学? 三层架构 + MVC 框架: Spring IOC AOP SpringBoot,新一代的JavaEE开发标准,自动装配 模块化~ all in one,代 ...

  5. 03-数据结构(C语言版)

    Day01 笔记 1 数据结构基本理论 1.1 算法五个特性: 1.1.1 输入.输出.有穷.确定.可行 1.2 数据结构分类 1.2.1 逻辑结构:集合.线性.树形.图形 1.2.2 物理结构:顺序 ...

  6. 记一次 JDK SPI 配置不生效的问题 → 这么简单都不会,还是回家养猪吧

    开心一刻 今天去幼儿园接小侄女,路上聊起了天 小侄女:小叔,今天我吃东西被老师发现了 我:老师说了什么 小侄女:她说拿出来,跟小朋友一起分享 我:那你拿出来了吗 小侄女一脸可怜的看向我,说道:没有,我 ...

  7. Random方法中的nextInt(int arg0)方法讲解

    nextInt方法会生成一个随机的在5以内的数,负载均衡随机策略底层用的就是这个方法: Random rand = new Random(); int index = rand.nextInt(5); ...

  8. 从零开始学YC-Framework之鉴权

    一.YC-Framework鉴权是基于哪一个开源框架做的? YC-Framework鉴权主要基于Dromara开源社区组织下的Sa-Token. 1.什么是Sa-Token? Sa-Token是一个轻 ...

  9. (干货)基于 veImageX 搭建海报生成平台 -- 附源码

    前言 618 年中促销即将来临,很多公司都会通过海报来宣传自己的促销方案,通常情况下海报由设计团队基于 PS.Sketch 等工具创作,后期若想替换海报文案.商品列表等内容则需打开原工程进行二次创作, ...

  10. 物联网lora模块应用案例和LoRawan网关通信技术

    什么是LoRa LoRa(Long Range) 无线通信技术是 Semtech 在2012年开发出来的一款适合物联网使用的射频IC.其设计理念为低功耗.长距离.低成本.网路简单.易于扩展的无线数传技 ...