LeetCode-688 骑士在棋盘上的概率
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/knight-probability-in-chessboard
题目描述
在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。
象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。
每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。
骑士继续移动,直到它走了 k 步或离开了棋盘。
返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。
示例 1:
输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。
示例 2:
输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000
提示:
1 <= n <= 25
0 <= k <= 100
0 <= row, column <= n
解题思路
一道标准的动态规划题。
需要三重dp(i,j,k) 表示从(i,j) 出发经过k步后还在棋盘上的概率,dp的初始状态为dp(i,j,0)均为1,状态转移方程是
其中dx = {-1 -2 -2 -1 1 2 2 1}, dy ={-2 -1 1 2 2 1 -1 -2}
最终结果就在dp(row, column, k)中。
代码展示
class Solution {
public:
double knightProbability(int n, int k, int row, int column) {
vector<vector<vector<double>>> dp(n, vector<vector<double>>(n, vector<double>(k + 1, 1.0)));
int dx[8] = {-1, -2, -2, -1, 1, 2, 2, 1};
int dy[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
for(int l = 1; l < k + 1; l++)
{
for(int i =0; i< n; i++)
{
for(int j = 0; j < n; j++)
{
double dSum = 0;
for(int m = 0; m < 8; m ++)
{
int x = i + dx[m];
int y = j + dy[m];
if(x >= 0 && x < n && y >= 0 && y < n)
{
dSum += dp[x][y][l - 1];
}
}
dp[i][j][l] = dSum / 8;
}
}
}
return dp[row][column][k];
}
};
运行结果
LeetCode-688 骑士在棋盘上的概率的更多相关文章
- Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)
688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...
- leetcode 688. “马”在棋盘上的概率
题目描述: 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 ( ...
- [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- 688. Knight Probability in Chessboard棋子留在棋盘上的概率
[抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- LeetCode——688. Knight Probability in Chessboard
一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...
- LeetCode 688. Knight Probability in Chessboard
原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...
- LeetCode668马在棋盘上的概率
已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c) ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- C#LeetCode刷题-动态规划
动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串 22.4% 中等 10 正则表达式匹配 18.8% 困难 32 最长有效括号 23.3% 困难 44 通配符匹配 17.7% ...
- [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
随机推荐
- 万字干货|Synchronized关键字详解
作者:小牛呼噜噜 | https://xiaoniuhululu.com 计算机内功.JAVA底层.面试.职业成长相关资料等更多精彩文章在公众号「小牛呼噜噜」 前言 大家好,我是呼噜噜,在之前的文章中 ...
- 《MySQL必知必会》之快速入门游标和触发器
第二十四章 使用游标 本章将介绍什么是游标以及如何使用游标 游标 之前的select语句检索出来的数据,没有办法得到第一行或者下一行 有时,需要在检索出来的行中前进或后退一行或多行.这就是使用游标的原 ...
- TCP\UDP协议 socket模块
目录 传输层主要协议 TCP协议 三次握手 TCP协议反馈机制 四次挥手 洪水攻击 UDP协议 socket模块 socket代码简介 socket.socket() server.bind() se ...
- codeforce E - Binary Inversions题解
题目: 给你一个01串,现在你可以(或者不用)选取其中一个元素进行一次反转操作0-1,1-0:从而使得串中的逆序对个数最多. 题目链接:codeforce origin problem 思路: 1. ...
- 【转载】EXCEL VBA-区域选择
1- 区域命名 ThisWorkbook.Names.Item("foo").RefersTo =Tabelle1!$A$1:$B$1 ThisWorkbook.Names.Ite ...
- [OpenCV实战]19 使用OpenCV实现基于特征的图像对齐
目录 1 背景 1.1 什么是图像对齐或图像对准? 1.2 图像对齐的应用 1.3 图像对齐基础理论 1.4 如何找到对应点 2 OpenCV的图像对齐 2.1 基于特征的图像对齐的步骤 2.2 代码 ...
- Jupyter Notebook入门指南
作者:京东科技隐私计算产品部 孙晓军 1. Jupyter Notebook介绍 图1 Jupter项目整体架构 [https://docs.jupyter.org/en/latest/project ...
- SQL Server登录初次提示状态码233,再次登录提示状态码18456
解决方案: 1.使用windows方式登录数据库,修改安全性属性为SQL Server 和Windows身份验证模式 2.打开SQL Server配置管理器,启动MSSQLSERVER协议 3.修改s ...
- python之路30 网络编程之初识并发编程1
并发编程理论 研究网络编程其实就是在研究计算机的底层原理及发展史 """ 计算机中真正干活的是CPU """ 操作系统发展史 1.穿孔卡片阶 ...
- .NetCore下基于FreeRedis实现的Redis6.0客户端缓存之缓存键条件优雅过滤
前言 众所周知内存缓存(MemoryCache)数据是从内存中获取,性能表现上是最优的,但是内存缓存有一个缺点就是不支持分布式,数据在各个部署节点上各存一份,每份缓存的过期时间不一致,会导致幻读等各种 ...