LeetCode-688 骑士在棋盘上的概率
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/knight-probability-in-chessboard
题目描述
在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。
象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。
每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。
骑士继续移动,直到它走了 k 步或离开了棋盘。
返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。
示例 1:
输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。
示例 2:
输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000
提示:
1 <= n <= 25
0 <= k <= 100
0 <= row, column <= n
解题思路
一道标准的动态规划题。
需要三重dp(i,j,k) 表示从(i,j) 出发经过k步后还在棋盘上的概率,dp的初始状态为dp(i,j,0)均为1,状态转移方程是
其中dx = {-1 -2 -2 -1 1 2 2 1}, dy ={-2 -1 1 2 2 1 -1 -2}
最终结果就在dp(row, column, k)中。
代码展示
class Solution {
public:
double knightProbability(int n, int k, int row, int column) {
vector<vector<vector<double>>> dp(n, vector<vector<double>>(n, vector<double>(k + 1, 1.0)));
int dx[8] = {-1, -2, -2, -1, 1, 2, 2, 1};
int dy[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
for(int l = 1; l < k + 1; l++)
{
for(int i =0; i< n; i++)
{
for(int j = 0; j < n; j++)
{
double dSum = 0;
for(int m = 0; m < 8; m ++)
{
int x = i + dx[m];
int y = j + dy[m];
if(x >= 0 && x < n && y >= 0 && y < n)
{
dSum += dp[x][y][l - 1];
}
}
dp[i][j][l] = dSum / 8;
}
}
}
return dp[row][column][k];
}
};
运行结果
LeetCode-688 骑士在棋盘上的概率的更多相关文章
- Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)
688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...
- leetcode 688. “马”在棋盘上的概率
题目描述: 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 ( ...
- [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- 688. Knight Probability in Chessboard棋子留在棋盘上的概率
[抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- LeetCode——688. Knight Probability in Chessboard
一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...
- LeetCode 688. Knight Probability in Chessboard
原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...
- LeetCode668马在棋盘上的概率
已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c) ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- C#LeetCode刷题-动态规划
动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串 22.4% 中等 10 正则表达式匹配 18.8% 困难 32 最长有效括号 23.3% 困难 44 通配符匹配 17.7% ...
- [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
随机推荐
- nuxt 登录注册加重置密码
<!-- 登录弹框 --> <div class="mask" v-show="flag"> <div class="m ...
- 【环境搭建】RocketMQ集群搭建
前置条件及效果图 条件: 两台服务器,个人是两台腾讯云服务器(其中嫖的朋友一个): 版本: rocketmq-version:4.4.0 rocketmq-console(mq控制台) Java:1. ...
- 3、数组、集合、Lambda、Stream与Optional类
一.数组: 数组保存在JVM堆内存中 1.数组的创建: (1).一维数组创建方式一: //一维数组方式一 Integer[] array01 = {1,2,3}; System.out.println ...
- [0x11] 130.火车进站问题【卡特兰数】
题意 link(more:129.,P1044) 简化题意:给定严格从 \(1\thicksim n\) 这 \(n(n\leqslant 6\times10^4)\) 个整数,规定每个数都要进出栈各 ...
- Spring中使用@RequestBody注解接收的实体类中的某些参数为null
1.问题描述 我写完一个接口,在用postman测试的时候,发现其中有一个参数cEnterpriseId明明是有值的,但接口controller接收到的该参数为null,但其他参数都不为null的. ...
- 1_使用swiper数组对象循环图片遇到的问题
今天在练习微信小程序的swiper组件时,想用列表循环出图片,发现图片一直没出来,控制台也没有报错,后来仔细一看,原来是语法格式写错了. 以下是我列表循环踩过的坑: 一:微信小程序的列表循环和vue的 ...
- LOJ 数列分块入门 9 题解题报告
LOJ 数列分块入门 9 题解题报告 \(\text{By DaiRuiChen007}\) I. 数列分块入门 1 题目大意 \(\text{Link}\) 维护一个长度为 \(n\) 的序列,支持 ...
- IDEA 2022.1.3 创建一个 Maven 管理的 Web 项目
新建一个空项目,用于管理模块 创建完成,如下所示 删除 src 目录 删除后,如下所示 新建一个 Maven 模块 新建完成,如下所示 右键 pro07-javaweb-begin 模块,选择 Add ...
- 基于 .NET7.0 开发Telegram 机器人(入门)
简介 Telegram(非正式简称TG.电报)是跨平台的即时通信软件,其客户端是自由及开放源代码软件,但服务端是专有软件.用户可以相互交换加密与自毁消息,发送照片.视频等所有类型文件.官方提供手机版( ...
- java入门与进阶-P1.1+P1.2
计算机与编程语言 计算机如何解决问题 !-- 首先计算机他是不知道自己需要去做什么的,它需要按照你所说的步骤一步一步进行直到结束 "请给我一杯水" 1.转身走到厨房; 2.找到一个 ...