来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/knight-probability-in-chessboard

题目描述

在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。

象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。

每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。

骑士继续移动,直到它走了 k 步或离开了棋盘。

返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。

示例 1:

输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。

示例 2:

输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000

提示:

1 <= n <= 25
0 <= k <= 100
0 <= row, column <= n

解题思路

一道标准的动态规划题。

需要三重dp(i,j,k) 表示从(i,j) 出发经过k步后还在棋盘上的概率,dp的初始状态为dp(i,j,0)均为1,状态转移方程是

其中dx = {-1 -2 -2 -1 1 2 2 1}, dy ={-2 -1 1 2 2 1 -1 -2}

最终结果就在dp(row, column, k)中。

代码展示

class Solution {
public:
double knightProbability(int n, int k, int row, int column) {
vector<vector<vector<double>>> dp(n, vector<vector<double>>(n, vector<double>(k + 1, 1.0)));
int dx[8] = {-1, -2, -2, -1, 1, 2, 2, 1};
int dy[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
for(int l = 1; l < k + 1; l++)
{
for(int i =0; i< n; i++)
{
for(int j = 0; j < n; j++)
{
double dSum = 0;
for(int m = 0; m < 8; m ++)
{
int x = i + dx[m];
int y = j + dy[m];
if(x >= 0 && x < n && y >= 0 && y < n)
{
dSum += dp[x][y][l - 1];
}
}
dp[i][j][l] = dSum / 8;
}
}
}
return dp[row][column][k];
}
};

运行结果

LeetCode-688 骑士在棋盘上的概率的更多相关文章

  1. Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)

    688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...

  2. leetcode 688. “马”在棋盘上的概率

    题目描述: 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 ( ...

  3. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  4. 688. Knight Probability in Chessboard棋子留在棋盘上的概率

    [抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  5. LeetCode——688. Knight Probability in Chessboard

    一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...

  6. LeetCode 688. Knight Probability in Chessboard

    原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...

  7. LeetCode668马在棋盘上的概率

    已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c)  ...

  8. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  9. C#LeetCode刷题-动态规划

    动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串   22.4% 中等 10 正则表达式匹配   18.8% 困难 32 最长有效括号   23.3% 困难 44 通配符匹配   17.7% ...

  10. [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

随机推荐

  1. tcp/udp 协议特性和三次握手

    一.TCP/UDP协议特性1)TCP特性:工作在传输层.建立连接.可靠的.错误检查 2)UDP特性:工作在传输层.不需要连接.不可靠的.有限的错误检查.传输性能高 2.控制位及确认号解释 控制位:由6 ...

  2. 《MySQL必知必会》之快速入门存储过程

    使用存储过程 本章介绍什么是存储过程,为什么使用.如何使用,并介绍如何创建和使用存储过程的基本语法 存储过程 在实际应用中,往往需要执行多个表的多条sql语句 存储过程就是为以后的使用而保存的一条或者 ...

  3. MySQL主从配置(Django实现主从配置读写分离)

    目录 一 MySQL主从配置原理(主从分离,主从同步) 二 操作步骤 2.1我们准备两台装好mysql的服务器(我在此用docker模拟了两台机器) 2.2 远程连接入主库和从库 远程连接主库 远程连 ...

  4. Django框架模板语法传值-过滤器-标签-自定义过滤器,标签,inclusion_tag

    目录 一:模版语法传值 1.模板语法两个书写方式 2.模板语法 3.测试模板语法是否可以把python支持的基本数据类型传入到前端 4.index.html 5.django模板语法取值方式 二:过滤 ...

  5. 高可用系列文章之三 - NGINX 高可用实施方案

    前文链接 高可用系列文章之一 - 概述 - 东风微鸣技术博客 (ewhisper.cn) 高可用系列文章之二 - 传统分层架构技术方案 - 东风微鸣技术博客 (ewhisper.cn) 四 NGINX ...

  6. 如何使用 EF Core 7 批量删除数据

    在 EF Core 7 中,我们可以使用批量操作来删除多条数据.这种方式与之前的版本有所不同,本文将对比 EFCore 7 和之前版本批量删除数据的不同方式. 删除给定 ID 的数据 在 EF Cor ...

  7. 青少年CTF-Web-Robots

    题目信息 题目名称:Robots 题目描述:昨天十三年社团讲课,讲了Robots.txt的作用,小刚上课没有认真听课正在着急,你能不能帮帮忙? 题目难度:一颗星 解题过程 访问题目链接 浏览器里是空白 ...

  8. Ynoi 数据结构题选做

    Ynoi 数据结构题选做 前言 我将成为数据结构之神!坚持 lxl 党的领导,紧随 nzhtl1477(女装灰太狼1477)的脚步.无论过去.现在还是未来,分块始终是实现 data structure ...

  9. VMware安装linux系统CentOs7.4 mini版过程

    创建虚拟机 新建虚拟机 选择虚拟机的操作系统,本文中安装的CentOS属于linux 设置虚拟机的名称和虚拟机所使用的文件再物理机中的路径, 设置虚拟机的cup数量和核心数量,如果设置的不合适可以再创 ...

  10. python 之路 37 Navicat 可视化软件使用、 pymysql模块使用

    多表查询的两种方法 方式1:连表操作 inner join 内连接 select * from emp inner join dep on emp.dep_id=dep.id; 只连接两张表中公有的数 ...