《Python机器学习手册——从数据预处理到深度学习》

这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习中python常用的这些库有更深入的理解,在应用中也能更为熟练。

以下是根据书上的代码进行实操,注释基本写明了每句代码的作用(写在本句代码之前)和print的输出结果(写在print之后)。不一定严格按照书上内容进行,根据代码运行时具体情况稍作顺序调整,也加入了一些自己的理解。

如果复制到自己的环境下跑一遍输出,相信理解会更深刻更清楚。

博客中每个代码块代表一次完整的运行结果,可以直接以此为单位复制并运行。


01-向量、矩阵和数组

本节主要是numpy库的基本应用。

包括:

  1. 初始化与格式
  2. 数据读取与批量处理
  3. 数值计算
  4. 矩阵计算
  5. 随机数

01-1 初始化与格式

import numpy as np

# 创建一个行向量
vector = np.array([1,2,3])
# 创建一个列向量
vector = np.array([[1],[2],[3]])
print(vector)
# 创建一个矩阵
matrix = np.array([[0,0],[2,0],[0,3]])
print(type(matrix)) #<class 'numpy.ndarray'>
# 查看行数和列数
print(matrix.shape) #(3, 2)
# 查看元素数量
print(matrix.size) #6
# 查看维数
print(matrix.ndim) #2
# 转换为矩阵格式mat
matrix = np.mat(matrix)
print(type(matrix)) #<class 'numpy.matrix'> from scipy import sparse
# 转换为压缩的稀疏行矩阵
matrix = sparse.csr_matrix(matrix)
print(matrix)
# (1, 0) 2
# (2, 1) 3
print(type(matrix)) #<class 'scipy.sparse.csr.csr_matrix'>

01-2 数据读取与批量处理

import numpy as np

matrix = np.array([[1,2,3],[4,5,6],[7,8,9]])
# 输出矩阵第二行第三列的元素(下标从0开始)
# 注意此处下标与二维list不同
print(matrix[1,2]) # 6 # 一维切片,[起始位置:结束位置],包括起始位置,不包括结束位置元素
# 输出第三个元素之前所有元素
vector = np.array([1,2,3])
print(vector[0:2])
# [1 2] # 二维切片,与一维类似[起始位置:结束位置],不同维度用','隔开
# '1:'第二行及之后所有行
# ':2'第三列之前所有列
print(matrix[1:,:2])
# [[4 5]
# [7 8]] # 对一个数组中多个元素同时应用某个函数
# 创建一个函数,add_100返回:输入值+100的值
add_100 = lambda i : i + 100
# 创建向量化函数
vectorized_add_100 = np.vectorize(add_100)
# 对矩阵所有元素应用这个函数
print(vectorized_add_100(matrix))
# [[101 102 103]
# [104 105 106]
# [107 108 109]]

01-3 数值计算

import numpy as np

matrix = np.array([[1,2,3],[4,5,6],[7,8,9]])
# 求矩阵中最大的元素
print(np.max(matrix)) # 9
# 求矩阵中最小的元素
print(np.min(matrix)) # 1
# 求每列最大的元素,axis指维度
print(np.max(matrix, axis = 0)) # [7 8 9]
# 求每行最大的元素
print(np.max(matrix, axis = 1)) # [3 6 9] # 计算矩阵的平均值
print(np.mean(matrix)) # 5.0
print(type(np.mean(matrix))) # <class 'numpy.float64'> # 计算矩阵的方差
print(np.var(matrix)) # 6.666666666666667
print(type(np.var(matrix))) # <class 'numpy.float64'> # 计算矩阵的标准差
print(np.std(matrix)) # 2.581988897471611
print(type(np.std(matrix))) # <class 'numpy.float64'> # 以上计算均可以加参数axis求每行或每列
# 求每行的平均值
print(np.mean(matrix, axis = 1)) # [2. 5. 8.]

01-4 矩阵计算

01-4-1 矩阵变形与矩阵转置

import numpy as np

matrix = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])

# 矩阵变形,不改变元素值,改变矩阵的形状
# 将矩阵从4*3变为2*6
print(matrix.shape) # (4, 3)
matrix = matrix.reshape(2,6)
print(matrix.shape) # (2, 6)
print(matrix)
# [[ 1 2 3 4 5 6]
# [ 7 8 9 10 11 12]]
# 也可以将其中一个维度设为默认'-1',会自己取整除之后的数作为默认维度
matrix = matrix.reshape(3,-1)
print(matrix.shape) # (3, 4)
print(matrix)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]] # 以下三种情况注意区别:
# 情况1
matrix = matrix.reshape(1,-1)
print(matrix.shape) # (1, 12)
print(matrix)
# [[ 1 2 3 4 5 6 7 8 9 10 11 12]]
# 情况2
matrix = matrix.reshape(3,-1)
print(matrix.shape) # (3, 4)
matrix = matrix.reshape(matrix.size)
print(matrix.shape) # (12,)
print(matrix)
# [ 1 2 3 4 5 6 7 8 9 10 11 12]
# 情况3
# 展开矩阵
matrix = matrix.reshape(3,-1)
print(matrix.shape) # (3, 4)
matrix = matrix.flatten()
print(matrix.shape) # (12,)
print(matrix)
# [ 1 7 2 8 3 9 4 10 5 11 6 12] # 矩阵转置
matrix = matrix.reshape(2,6)
print(matrix.shape) # (2, 6)
print(matrix)
# [[ 1 2 3 4 5 6]
# [ 7 8 9 10 11 12]]
matrix = matrix.T
print(matrix.shape) # (6, 2)
print(matrix)
# [[ 1 7]
# [ 2 8]
# [ 3 9]
# [ 4 10]
# [ 5 11]
# [ 6 12]]

01-4-2 矩阵的秩、行列式、迹、特征值与特征向量

import numpy as np

matrix = np.array([[1,1,3],[2,2,6],[3,3,9]])
print(matrix)
# [[1 1 3]
# [2 2 6]
# [3 3 9]] # 矩阵的秩 r(A)
print(np.linalg.matrix_rank(matrix)) # 1 # 矩阵的行列式 det(A)或|A|
print(np.linalg.det(matrix)) # 0.0 # 矩阵的对角线元素 tr(A)
print(np.diagonal(matrix)) # [1 2 9]
# 可以引入参数offset对主对角线上下偏移
# 向上偏移
print(np.diagonal(matrix, offset = 1)) # [1 6]
# 向下偏移
print(np.diagonal(matrix, offset = -1)) # [2 3] # 矩阵的迹 tr(A),即对角线元素之和
print(np.trace(matrix)) # 12
# 同样可以对主对角线进行偏移
print(np.trace(matrix, offset = 1)) # 7 matrix = np.array([[-2,1,1],[0,2,0],[-4,1,3]])
# 矩阵的特征值和特征向量
eigen_values, eigen_vectors = np.linalg.eig(matrix)
# 特征值
print(eigen_values)
# [-1. 2. 2.]
# 特征向量
print(eigen_vectors)
# [[-0.70710678 -0.24253563 0.30151134]
# [ 0. 0. 0.90453403]
# [-0.70710678 -0.9701425 0.30151134]]

01-4-3 矩阵的加减、乘法和矩阵的逆

import numpy as np

mat_1 = np.array([[1,1,2],[1,1,2],[1,1,2]])
mat_2 = np.array([[1,2,1],[1,2,1],[1,2,1]]) # 矩阵相加
print(np.add(mat_1, mat_2))
# [[2 3 3]
# [2 3 3]
# [2 3 3]]
print(mat_1 + mat_2)
# [[2 3 3]
# [2 3 3]
# [2 3 3]] # 矩阵相减
print(np.subtract(mat_1, mat_2))
# [[ 0 -1 1]
# [ 0 -1 1]
# [ 0 -1 1]]
print(mat_1 - mat_2)
# [[ 0 -1 1]
# [ 0 -1 1]
# [ 0 -1 1]] # 矩阵乘法
print(np.dot(mat_1, mat_2))
# [[4 8 4]
# [4 8 4]
# [4 8 4]]
print(mat_1 @ mat_2)
# [[4 8 4]
# [4 8 4]
# [4 8 4]] # 矩阵对应元素相乘
print(mat_1 * mat_2)
# [[1 2 2]
# [1 2 2]
# [1 2 2]] # 矩阵的逆 A-1
mat = np.array([[0,1],[1,0]])
print(np.linalg.inv(mat))
# [[0. 1.]
# [1. 0.]] # 验证:A*(A-1) = I
print(mat @ np.linalg.inv(mat))
# [[1. 0.]
# [0. 1.]]

01-5 随机数

import numpy as np

# 设计随机数种子
np.random.seed(0)
# 生成3个0.0到1.0之间的随机数
rand = np.random.random(3)
print(rand) # [0.5488135 0.71518937 0.60276338] # 生成3个1到10之间的随机整数
rand = np.random.randint(0, 11, 3)
print(rand) # [3 7 9] # 从均值为0,标准差为1的正态分布中抽取3个数
rand = np.random.normal(0, 1, 3)
print(rand) # [-1.42232584 1.52006949 -0.29139398] # 从均值为0,散布程度为1的logistic分布中抽取3个数
rand = np.random.logistic(0, 1, 3)
print(rand) # [-0.98118713 -0.08939902 1.46416405] # 从大于等于1,小于2的范围中抽取3个数
rand = np.random.uniform(1, 2, 3)
print(rand) # [1.47997717 1.3927848 1.83607876]

[Python]-numpy模块-机器学习Python入门《Python机器学习手册》-01-向量、矩阵和数组的更多相关文章

  1. python numPy模块 与numpy里的数据类型、数据类型对象dtype

    学习链接:http://www.runoob.com/numpy/numpy-tutorial.html 官方链接:https://numpy.org/devdocs/user/quickstart. ...

  2. python numpy模块

    目录 numpy模块 一维数组 二维数组(用的最多的) 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的元素的替换 通过函数方法创建多维数组 矩阵的运算 点乘和转置(了解) 点乘必须 m*n ...

  3. matlab入门笔记(二):矩阵和数组

    摘自<matlab从入门到精通>胡晓东 matlab最基本的数据结构就是矩阵,一个二维的.长方形形状的数据,可以用易于使用的矩阵形式来存储,这些数据可以是数字,字符.逻辑状态,甚至是mat ...

  4. python numpy 模块简单介绍

    用python自带的list去处理数组效率很低, numpy就诞生了, 它提供了ndarry对象,N-dimensional object, 是存储单一数据类型的多维数组,即所有的元素都是同一种类型. ...

  5. python - json模块使用 / 快速入门

    json基本格式 """ json格式 -> [{}, {}]: [{ "name": "Bob", "gende ...

  6. python numpy模块使用笔记(更新)

    np.arange(int a) 生成一个一维array,元素个数是a个,元素是0到a-1 注意arange不能直接生成多维array np.arange(int a).reshape(int b,i ...

  7. Python Numpy模块函数np.c_和np.r_

    np.r_:是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat(). np.c_:是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的 ...

  8. python pickle模块的使用/将python数据对象序列化保存到文件中

    # Python 使用pickle/cPickle模块进行数据的序列化 """Python序列化的概念很简单.内存里面有一个数据结构, 你希望将它保存下来,重用,或者发送 ...

  9. Python Deque 模块使用详解,python中yield的用法详解

    Deque模块是Python标准库collections中的一项. 它提供了两端都可以操作的序列, 这意味着, 你可以在序列前后都执行添加或删除. https://blog.csdn.net/qq_3 ...

随机推荐

  1. (数据库提权——Redis)Redis未授权访问漏洞总结

    一.介绍 1.Redis数据库 Redis(Remote Dictionary Server ),即远程字典服务,是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key- ...

  2. 从0到1建设智能灰度数据体系:以vivo游戏中心为例

    作者: vivo 互联网数据分析团队-Dong Chenwei vivo 互联网大数据团队-Qin Cancan.Zeng Kun 本文介绍了vivo游戏中心在灰度数据分析体系上的实践经验,从&quo ...

  3. Lambda表达式的无参数无返回值的练习和Lambda表达式有参数有返回值的练习

    使用Lambda(无参无返回) 说明:给定一个厨师(Cook)接口,内含唯一的抽象方法makeFood,且无参数.无返回值.如下: public interface Cook{ public abst ...

  4. 2019 CSP-S 初赛解析

    因为我不会设置用博客园显示Markdown语法,所以在洛谷也写了一份:传送门 一起讨论的这套卷.题干 然后还有一些可以借鉴一下的解析 选择: T1. 注意运算顺序: a%3=1 --> (int ...

  5. word段落前的小点·

    原因是因为修改论文时,要求在论文的标题前加上 '·' 类似: 在网上搜索了半天,都是加符号,特此记录 解决: 1.文件---选项---显示--勾选段落标记 2.修改样式 至此,设置完毕,章节前的小点已 ...

  6. 【设计过程】.NET ORM FreeSql WhereDynamicFilter 动态表格查询功能

    前言 最近几乎每天40度,越热越不想面对电脑,还好开源项目都比较稳定没那么多待解决问题,趁着暑假带着女儿学习游泳已略有小成.游泳好处太多了,建议有孩子的都去学学,我是在岸边指导大约一周左右就学会了,目 ...

  7. P2183 [国家集训队]【一本通提高组合数学】礼物

    [国家集训队]礼物 题目背景 一年一度的圣诞节快要来到了.每年的圣诞节小 E 都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小 E 心目中的重要性不同,在小 E 心中分量越重的人,收到的礼物会 ...

  8. 多校B层冲刺NOIP20211111模拟12

    题面:PDFhttp://xn--gwt928b.accoders.com/pdf/10248/10248.pdfhttp://xn--gwt928b.accoders.com/pdf/10248/1 ...

  9. github碰到的问题

    下载问题 自己编译一下 mvn clear mvn compile mvn package 自己编译之后的文件,然后解压即可,第一次自己傻傻的,直接用源码跑,少报错! 项目预览问题 添加1s即可 下载 ...

  10. Netty源码解读(四)-读写数据

    读写Channel(READ)的创建和注册 在NioEventLoop#run中提到,当有IO事件时,会调用processSelectedKeys方法来处理. 当客户端连接服务端,会触发服务端的ACC ...