「题解报告」CF1067A Array Without Local Maximums
大佬们的题解都太深奥了,直接把转移方程放出来让其他大佬们感性理解,蒟蒻们很难理解,所以我就写了一篇让像我一样的蒟蒻能看懂的题解
动态规划三部曲:确定状态,转移方程,初始状态和答案。
——神仙 @akicc
第一步 确定状态
\(f_{i,j,k}(k\in\{0,1,2\})\)表示第 \(i\) 个数选为 \(j\) 且和前一个数是小于/等于/大于(\(k=0\) 是大于,\(k=1\) 是等于,\(k=2\) 是小于)的关系时的方案数。
第二步 转移方程
把三种关系分开讨论:
- \(k=0\),比上一个大,它的方案数就是上一个数选的比它小的数的方案数和;
- \(k=1\),由于和上一个数相同,它的方案数就是上一个数的方案数和;
- \(k=2\),比上一个小,它的方案数就是上一个数选的比它大的数的方案数和,但是为了防止上一个数比相邻的数都大,我们要去掉上一个数比上上个数大的方案数。
那么我们的转移方程就是:
\(f_{i,j,0}=\sum^{j-1}_{l=1}f_{i-1,l,0}+f_{i-1,l,1}+f_{i-1,l,2}\)
\(f_{i,j,1}=f_{i-1,j,0}+f_{i-1,j,1}+f_{i-1,j,2}\)
\(f_{i,j,2}=\sum^{200}_{l=j+1}f_{i-1,l,1}+f_{i-1,l,2}\)
如果 \(a_i=-1\) 则 \(1\le j\le 200\),否则 \(j=a_i\) 。
直接求和会超时,我们可以使用前缀和优化。
第三步 初始状态和答案
如果第二个数取得比第一个数小就不符合题目要求了,而第一个数只有一种取法,所以我们让 \(f_{1,j,0}=1\),就可以让 \(f_{2,j,2}\) 取不到方案数了!
如果最后一个数比倒数第二个数大,也不符合题意,所以我们在取答案的时候不能取 \(f_{n-1,j,0}\) 。
代码
#include <bits/stdc++.h>
#define _for(i,a,b) for(int i=a;i<=b;++i)
#define for_(i,a,b) for(int i=a;i>=b;--i)
#define ll long long
using namespace std;
const int N=1e5+10,M=998244353;
ll n,a[N],f[N][205][3],ans;
void pre(){
if(a[1]==-1)_for(i,1,200)f[1][i][0]=1;
else f[1][a[1]][0]=1;
}void dp(){
_for(i,2,n){
int s=0;
_for(j,1,200){
if(a[i]==-1||a[i]==j)f[i][j][0]=s%M,f[i][j][1]=(f[i-1][j][0]+f[i-1][j][1]+f[i-1][j][2])%M;
s=(s+f[i-1][j][0]+f[i-1][j][1]+f[i-1][j][2])%M;
}s=0;
for_(j,200,1){
if(a[i]==-1||a[i]==j)f[i][j][2]=s%M;
s=(s+f[i-1][j][1]+f[i-1][j][2])%M;
}
}
}int main(){
scanf("%lld",&n);
_for(i,1,n)scanf("%lld",&a[i]);
pre(),dp();
_for(i,1,200)ans=(ans+f[n][i][1]+f[n][i][2])%M;
printf("%lld",ans);
//system("pause");
return 0;
}
「题解报告」CF1067A Array Without Local Maximums的更多相关文章
- 「题解报告」 P3167 [CQOI2014]通配符匹配
「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...
- 「题解报告」P4577 [FJOI2018]领导集团问题
题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...
- 「题解报告」P2154 虔诚的墓主人
P2154 虔诚的墓主人 题解 原题传送门 题意 在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数. \(1 \le N, M ...
- 「题解报告」SP16185 Mining your own business
题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...
- 「题解报告」Blocks
P3503 Blocks 题解 原题传送门 思路 首先我们可以发现,若 \(a_l\) ~ \(a_r\) 的平均值大于等于 \(k\) ,则这个区间一定可以转化为都大于等于 \(k\) 的.我们就把 ...
- 「题解报告」P3354
P3354 题解 题目传送门 一道很恶心的树形dp 但是我喜欢 题目大意: 一片海旁边有一条树状的河,入海口有一个大伐木场,每条河的分叉处都有村庄.建了伐木场的村庄可以直接处理木料,否则要往下游的伐木 ...
- 「题解报告」P7301 【[USACO21JAN] Spaced Out S】
原题传送门 神奇的5分算法:直接输出样例. 20分算法 直接把每个点是否有牛的状态DFS一遍同时判断是否合法,时间复杂度约为\(O(2^{n^2})\)(因为有判断合法的剪枝所以会比这个低).而在前四 ...
- 【计数dp】Array Without Local Maximums
参考博客:[CF1068D]Array Without Local Maximums(计数DP) [题意] n<=1e5 dp[i][j][k]表示当前第i个数字为j,第i-1个数字与第i个之间 ...
- codeforces 1068d Array Without Local Maximums dp
题目传送门 题目大意:给出一个长度为n的数组,这个数组有的数是给出的,有的数是固定的,且范围都在[1,200]之间,要求这个数组中,每一个数字都小于等于 前后两个数字的最大值,求方案数mod p. 思 ...
随机推荐
- 实现领域驱动设计 - 使用ABP框架 - 存储库
存储库 Repository 是一个类似于集合的接口,领域层和应用程序层使用它来访问数据持久性系统(数据库),以读写业务对象(通常是聚合) 常见的存储库原则是: 在领域层定义一个存储库接口(因为它被用 ...
- 面试突击60:什么情况会导致 MySQL 索引失效?
为了验证 MySQL 中哪些情况下会导致索引失效,我们可以借助 explain 执行计划来分析索引失效的具体场景. explain 使用如下,只需要在查询的 SQL 前面添加上 explain 关键字 ...
- salt stack安装与使用
SaltStack除了传统的C/S架构外,其实还有Masterless架构,如果采用Masterless架构,我不需要单独安装一台SaltStack Master机器,只需要在每台机器上安装Minio ...
- runc hang 导致 Kubernetes 节点 NotReady
Kubernetes 1.19.3 OS: CentOS 7.9.2009 Kernel: 5.4.94-1.el7.elrepo.x86_64 Docker: 20.10.6 先说结论,runc v ...
- 全国土壤阳离子交换量CEC空间分布数据
数据下载链接:百度云下载链接 土壤阳离子交换量,简称CEC,是指土壤胶体所能吸附各种阳离子的总量.土壤阳离子交换量 cation exchange capacity 即CEC 是指土壤胶体所能吸附各 ...
- Java编程作业
1.编程题 设计一个用户类User,类中的变量有用户名.密码和记录用户数量的变量,定义3个构造方法:无参的.为用户名赋值的.为用户名和密码赋值的,还有获取和设置密码的方法和返回类信息的方法. pack ...
- Markdown 的基本使用
Markdown基本语法 1.标题 //标题的写法 #一级标题 ##二级标题 ###三级标题 //以此类推... 效果: 一级标题 二级标题 三级标题 2.分割线 使用三个或以上-或*表示,并且改行不 ...
- 老子云携手福昕鲲鹏,首次实现3D OFD三维版式文档的重大突破
你见过能动起来的文档吗? 这可不是动图,也不是视频,而是可以直接自由交互3D模型的3D OFD文档! OFD可能有人不熟悉,它其实是国产"PDF",3D OFD则突破了以往文字.图 ...
- 乘风破浪,遇见未来新能源汽车(Electric Vehicle)之特斯拉提车必须知道的十个流程
订车 线下门店或者官网可以咨询和下单,一般来说,订金就是1000,还算可以接受. 订单账号 特斯拉账号是以邮箱为区分的,而不是手机号,我们下单的时候需要提供一个邮箱用来注册特斯拉账号. 注意了,敲黑板 ...
- 题解 P2657 【[SCOI2009] windy 数】
数位 dp. // 数位 dp 其实是爆搜加记忆化 #include<iostream> #include<cstring> #include<cmath> usi ...