矩池云上使用nvidia-smi命令教程
简介
nvidia-smi全称是NVIDIA System Management Interface ,它是一个基于NVIDIA Management Library(NVML)构建的命令行实用工具,旨在帮助管理和监控NVIDIA GPU设备。
详解nvidia-smi命令
接下来我介绍一下,用nvidia-smi命令来查询机器GPU使用情况的相关内容。
nvidia-smi
我以上图的查询内容为例,已经复制出来了,如下,
(myconda) root@8dbdc324be74:~# nvidia-smi
Tue Jul 20 14:35:11 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... On | 00000000:1C:00.0 Off | 0 |
| N/A 27C P0 31W / 300W | 0MiB / 16280MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... On | 00000000:1D:00.0 Off | 0 |
| N/A 25C P0 32W / 300W | 0MiB / 16280MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
我们来拆分一下
NVIDIA-SMI 460.32.03 #
Driver Version: 460.32.03 # 英伟达驱动版本
CUDA Version: 11.2 # CUDA版本
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... On | 00000000:1C:00.0 Off | 0 |
| N/A 27C P0 31W / 300W | 0MiB / 16280MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... On | 00000000:1D:00.0 Off | 0 |
| N/A 25C P0 32W / 300W | 0MiB / 16280MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
GPU: # GPU的编号,0代表第一张显卡,1代表第二张,依次类推
Fan: # 风扇转速(0%–100%),N/A表示没有风扇
Name: # GPU的型号,以此处为例是P100
Temp: # GPU温度(GPU温度过高会导致GPU频率下降)
Perf: # 性能状态,从P0(最大性能)到P12(最小性能)
Pwr: # GPU功耗
Persistence-M: # 持续模式的状态(持续模式耗能大,但在新的GPU应用启动时花费时间更少)
Bus-Id: # GPU总线,domain:bus:device.function
Disp.A: # Display Active,表示GPU的显示是否初始化
Memory-Usage: # 显存使用率(显示显存占用情况)
Volatile GPU-Util: # 浮动的GPU利用率
ECC: # 是否开启错误检查和纠正技术,0/DISABLED, 1/ENABLED
Compute M.: # 计算模式,0/DEFAULT,1/EXCLUSIVE_PROCESS,2/PROHIBITED
Memory-Usage和Volatile GPU-Util的两个不一样的东西,显卡由GPU和显存等部分所构成,GPU相当于显卡上的CPU,显存相当于显卡上的内存。在跑任务的过程中可以通过优化代码来提高这两者的使用率。
nvcc和nvidia-smi显示的CUDA版本不同?
(myconda) root@8dbdc324be74:~# nvidia-smi
Tue Jul 20 14:35:11 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... On | 00000000:1C:00.0 Off | 0 |
| N/A 27C P0 31W / 300W | 0MiB / 16280MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... On | 00000000:1D:00.0 Off | 0 |
| N/A 25C P0 32W / 300W | 0MiB / 16280MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
(myconda) root@8dbdc324be74:~# nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Oct_12_20:09:46_PDT_2020
Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0
可以看到nvcc的CUDA版本是11.1,而nvidia-smi的CUDA版本是11.2。这对运行任务是没有影响的,绝大多数代码都是可以正常跑起来的,引起这个的主要是因为CUDA两个主要的API,runtime API和driver API。神奇的是这两个API都有自己对应的CUDA版本(如图上的11.1和11.2)。在StackOverflow有一个解释,如果driver API和runtime API的CUDA版本不一致可能是因为你使用的是单独的GPU driver installer,而不是CUDA Toolkit installer里的GPU driver installer。在矩池云上的表现可以解释为driver API来自于物理机器的驱动版本,runtime API是来自于矩池云镜像环境内的CUDA Toolkit版本。
实时显示显存使用情况
nvidia-smi -l 5 #5秒刷新一次
动态刷新信息(默认5s刷新一次),按Ctrl+C停止,可指定刷新频率,以秒为单位
#每隔一秒刷新一次,刷新频率改中间数字即可
watch -n 1 -d nvidia-smi
在这里不建议使用watch查看nvidia-smi,watch每个时间周期开启一个进程(PID),查看后关闭进程,可能会影响到其他进程。
矩池云上使用nvidia-smi命令教程的更多相关文章
- 矩池云上安装yolov5并测试教程
官方仓库:https://github.com/ultralytics/yolov5 官方文档:https://docs.ultralytics.com/quick-start/ 此案例我是租用了k8 ...
- 矩池云上安装及使用Milvus教程
选择cuda10.1的镜像 更新源及拷贝文件到本地 apt-get update cp -r /public/database/milvus/ / cd /milvus/ cp ./lib/* /us ...
- 在矩池云上复现 CVPR 2018 LearningToCompare_FSL 环境
这是 CVPR 2018 的一篇少样本学习论文:Learning to Compare: Relation Network for Few-Shot Learning 源码地址:https://git ...
- 矩池云上安装ikatago及远程链接教程
https://github.com/kinfkong/ikatago-resources/tree/master/dockerfiles 从作者的库中可以看到,该程序支持cuda9.2.cuda10 ...
- 矩池云上编译安装dlib库
方法一(简单) 矩池云上的k80因为内存问题,请用其他版本的GPU去进行编译,保存环境后再在k80上用. 准备工作 下载dlib的源文件 进入python的官网,点击PyPi选项,搜索dilb,再点击 ...
- 如何在矩池云上运行FinRL-Libray股票交易策略框架
FinRL-Libray 项目:https://github.com/AI4Finance-LLC/FinRL-Library 选择FinRL镜像 在矩池云-主机市场选择合适的机器,并选择FinRL- ...
- 矩池云上TensorBoard/TensorBoardX配置说明
Tensorflow用户使用TensorBoard 矩池云现在为带有Tensorflow的镜像默认开启了6006端口,那么只需要在租用后使用命令启动即可 tensorboard --logdir lo ...
- 矩池云上cifar10使用说明
矩池云将 keras 预训练模型保存目录为 /public/keras_pretrained_model/ 使用方法: 先执行命令,创建目录 mkdir -p ~/.keras/models/ 然后将 ...
- 矩池云上安装yolov4 darknet教程
这里我是用PyTorch 1.8.1来安装的 拉取仓库 官方仓库 git clone https://github.com/AlexeyAB/darknet 镜像仓库 git clone https: ...
随机推荐
- docker常用命令、镜像命令、容器命令、数据卷,使用dockerFile创建镜像,dockefile的语法规则。
一.docker常用命令? 1. 常用帮助命令 1.1 docker的信息以及版本号 /* docker info 查看docker的信息 images2 docker本身就是一个镜像. docker ...
- Sleep_Yield_Join
名称解释 Sleep:意思就是睡眠,当前线程暂停一段时间让给别的线程去运行;Sleep是怎么复活的?由你的睡眠时间而定,等睡眠到规定的时间自动复活. Yield:就是当前线程正在执行的时候停止下来进入 ...
- String存放位置
简介 字符串在不同的JDK版本中,存放的位置不同,创建方式不同,存放的位置也不同. 存放位置 JDK1.7以下,无论何种方法创建String对象,位置都位于方法区. JDK1.8及1.8以上,new ...
- CentOs7.6配置邮件服务并发送邮件
1.使用Yum 来安装依赖包 yum -y install sendmail yum -y install mailx 2.获取授权码 下面以腾讯为例 https://service.mail.qq. ...
- 获取联系人列表的时候contact_id出现null的值
因为删除联系人只是把它的contact_id设置为null,所以只要手机上删除过联系人id就会有null,用之前先判断是不是null就好了
- tomcat实现多虚拟主机
一.安装tomcat 请查看:二进制安装tomat 二.配置虚拟主机 2.1 修改server.xml # vim /usr/local/tomcat/conf/server.xml ...省略 #在 ...
- linux_15
实现基于MYSQL验证的vsftpd虚拟用户访问 配置samba共享,实现/www目录共享 使用rsync+inotify实现/www目录实时同步 LVS调度算法总结 LVS的跨网络DR实现
- Involuting Bunny! (2021.8)
CF1555F & Submission. Tags:「A.生成树」「B.Tricks」 分类处理询问的 trick:连接两个连通块的边显然合法,先用这些边构建生成森林.发现每条边 ...
- LNK善意利用
lnk lnk在Windows平台下是快捷方式,可以指向其他目录下的文件,并且可以传递参数.现在有些恶意活动会恶意利用lnk,执行恶意代码. 关于lnk的格式,可以使用010 editor的模 ...
- suse 12 sp3 利用shell脚本离线编译安装ansible
# 测试环境是suse 12 sp3的系统,机器都是内网使用的,安装ansible真的很难顶 # 测试环境使用的python版本:2.7.13-27 # 此脚本只在本人测试环境成功,其他环境,需要选择 ...