洛谷P1162 填涂颜色

题目描述

由数字 \(0\) 组成的方阵中,有一任意形状闭合圈,闭合圈由数字 \(1\) 构成,围圈时只走上下左右 \(4\) 个方向。现要求把闭合圈内的所有空间都填写成 \(2\)。例如:\(6\times 6\) 的方阵(\(n=6\)),涂色前和涂色后的方阵如下:

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

输入格式

每组测试数据第一行一个整数 \(n(1 \le n \le 30)\)。

接下来 \(n\) 行,由 \(0\) 和 \(1\) 组成的 \(n \times n\) 的方阵。

方阵内只有一个闭合圈,圈内至少有一个 \(0\)。

输出格式

已经填好数字 \(2\) 的完整方阵。

样例输入

6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

样例输出

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

题目分析

类似于DFS的连通块问题,但要将外围的\(0\)标记为不行(因为最外一圈始终有不少于一个开放,即非1区域)

随后用DFS从任意一个\(0\)开始染色就解决了

AC代码

#include<bits/stdc++.h>
using namespace std;
int n,mapp[50][50],dx[5]={0,-1,0,1,-0},dy[5]={0,0,1,0,-1}; //打表
void dfs(int p, int q){
for(int i=1;i<=4;i++){
int np=p+dx[i],nq=q+dy[i];
if(np>0&&np<n+1&&nq>0&&nq<n+1&&mapp[np][nq]==0){
mapp[np][nq]=3; //可以新建一个bool型数组,也可以像这样直接标记
dfs(np,nq);
}
}
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>mapp[i][j];
}
}
for(int i=1;i<=n;i++){ //前两次循坏排除边界0
if(mapp[i][1]==0){
dfs(i,1);
}
if(mapp[i][n]==0){ //此处不能写else if(过来人的痛)
dfs(i,n);
}
}
for(int i=1;i<=n;i++){
if(mapp[1][i]==0){
dfs(1,i);
}
if(mapp[n][i]==0){
dfs(n,i);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mapp[i][j]==3) cout<<0<<' ';
else if(mapp[i][j]==1) cout<<1<<' ';
else if(mapp[i][j]==0) cout<<2<<' ';
}
cout<<endl;
}
return 0;
}

洛谷P1135 奇怪的电梯

题目描述

呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 \(i\) 层楼(\(1 \le i \le N\))上有一个数字 \(K_i\)(\(0 \le K_i \le N\))。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: \(3, 3, 1, 2, 5\) 代表了 \(K_i\)(\(K_1=3\),\(K_2=3\),……),从 \(1\) 楼开始。在 \(1\) 楼,按“上”可以到 \(4\) 楼,按“下”是不起作用的,因为没有 \(-2\) 楼。那么,从 \(A\) 楼到 \(B\) 楼至少要按几次按钮呢?

输入格式

共二行。

第一行为三个用空格隔开的正整数,表示 \(N, A, B\)(\(1 \le N \le 200\),\(1 \le A, B \le N\))。

第二行为 \(N\) 个用空格隔开的非负整数,表示 \(K_i\)。

输出格式

一行,即最少按键次数,若无法到达,则输出 -1

样例输入

5 1 5
3 3 1 2 5

样例输出

3

题目分析

另一道典型的入门BFS题型,分析可见这里

AC代码

#include<bits/stdc++.h>
using namespace std;
int n,a,b,k[250],v[250],tp[40020];
bool flag[250];
int main(){
scanf("%d %d %d",&n,&a,&b);
for(int i=1;i<=n;i++) cin>>k[i];
flag[a]=1;
tp[1]=a;
v[a]=1;
int left=1,right=1;
while(left<=right){
int x=tp[left++];
if(x==b){
cout<<v[x]-1;
return 0;
}
for(int i=1;i<=2;i++){
int nx=x+k[x]*pow(-1,i); //判断+-的小技巧
if(nx>0&&nx<n+1&&!flag[nx]){
flag[nx]=1;
v[nx]=v[x]+1;
tp[++right]=nx;
}
}
}
cout<<-1;
return 0;
}

BFS广度优先搜索例题分析的更多相关文章

  1. BFS广度优先搜索 poj1915

    Knight Moves Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25909 Accepted: 12244 Descri ...

  2. 0算法基础学算法 搜索篇第二讲 BFS广度优先搜索的思想

    dfs前置知识: 递归链接:0基础算法基础学算法 第六弹 递归 - 球君 - 博客园 (cnblogs.com) dfs深度优先搜索:0基础学算法 搜索篇第一讲 深度优先搜索 - 球君 - 博客园 ( ...

  3. 图的遍历BFS广度优先搜索

    图的遍历BFS广度优先搜索 1. 简介 BFS(Breadth First Search,广度优先搜索,又名宽度优先搜索),与深度优先算法在一个结点"死磕到底"的思维不同,广度优先 ...

  4. 算法竞赛——BFS广度优先搜索

    BFS 广度优先搜索:一层一层的搜索(类似于树的层次遍历) BFS基本框架 基本步骤: 初始状态(起点)加到队列里 while(队列不为空) 队头弹出 扩展队头元素(邻接节点入队) 最后队为空,结束 ...

  5. GraphMatrix::BFS广度优先搜索

    查找某一结点的邻居: virtual int firstNbr(int i) { return nextNbr(i, n); } //首个邻接顶点 virtual int nextNbr(int i, ...

  6. 步步为营(十六)搜索(二)BFS 广度优先搜索

    上一篇讲了DFS,那么与之相应的就是BFS.也就是 宽度优先遍历,又称广度优先搜索算法. 首先,让我们回顾一下什么是"深度": 更学术点的说法,能够看做"单位距离下,离起 ...

  7. 关于宽搜BFS广度优先搜索的那点事

    以前一直知道深搜是一个递归栈,广搜是队列,FIFO先进先出LILO后进后出啥的.DFS是以深度作为第一关键词,即当碰到岔道口时总是先选择其中的一条岔路前进,而不管其他岔路,直到碰到死胡同时才返回岔道口 ...

  8. [MIT6.006] 13. Breadth-First Search (BFS) 广度优先搜索

    一.图 在正式进入广度优先搜索的学习前,先了解下图: 图分为有向图和无向图,由点vertices和边edges构成.图有很多应用,例如:网页爬取,社交网络,网络传播,垃圾回收,模型检查,数学推断检查和 ...

  9. DFS(深度优先搜索)和BFS(广度优先搜索)

    深度优先搜索算法(Depth-First-Search) 深度优先搜索算法(Depth-First-Search),是搜索算法的一种. 它沿着树的深度遍历树的节点,尽可能深的搜索树的分支. 当节点v的 ...

随机推荐

  1. PHP全栈开发(八):CSS Ⅶ 表格 style

    表格默认是没有边框的,因此,我们在设置表格格式的时候,首先要设置的是表格边框的样式,也就是 table{ border-style:solid; } 设置完表格表格的样式之后,可以设置表格边框的粗细程 ...

  2. 洛谷P4197 Peaks (Kruskal重构树)

    读题,只经过困难值小于等于x的路径,容易想到用Kruskal重构树:又要查询第k高的山峰,我们选择用主席树求解. 先做一棵重构树,跑一遍dfs,重构树中每一个非叶子节点对应一段区间,我们开range[ ...

  3. 数据结构之单链表(基于Java实现)

    链表:在计算机中用一组任意的存储单元存储线性表的数据元素称为链式存储结构,这组存储结构可以是连续的,也可以是不连续的,因此在存储数据元素时可以动态分配内存. 注:在java中没有指针的概念,可以理解为 ...

  4. Java Style的C++容器流式处理类

    很久没有上博客园了,最近一段时间,因为工作的关系时间上比较闲,利用闲暇时间重新翻了一下丢弃很久的C++语言.C++从98.11.14.17目前已经也走到了20版本,发生了很多变化,也引入了很多新的语言 ...

  5. [渲染层错误] [jsbridge] invoke remoteDebugInfo fail: too eayly.

    1.问题描述 建立新的小程序项目时.控制台报错 [渲染层错误] [jsbridge] invoke remoteDebugInfo fail: too eayly. 2.解决方法 修改调试基础库的版本 ...

  6. 论文解读(GLA)《Label-invariant Augmentation for Semi-Supervised Graph Classification》

    论文信息 论文标题:Label-invariant Augmentation for Semi-Supervised Graph Classification论文作者:Han Yue, Chunhui ...

  7. C语言二叉树遍历及路径查找

    #include<iostream> #include<stdio.h> #include<math.h> #include<malloc.h> usi ...

  8. pip cmd下载速度慢解决方案

    cmd下载速度慢不是电脑问题,而是下载的网站有网速限制,如pip,虽然没被墙,但由于是外网,网速极差,经常是几KB一秒,所以我们可以采用镜像服务器,即在命令后加上 -i https://pypi.tu ...

  9. vulnhub靶场之ICA: 1

    准备: 攻击机:虚拟机kali.本机win10. 靶机:ICA: 1,网段地址我这里设置的桥接,所以与本机电脑在同一网段,下载地址:https://download.vulnhub.com/ica/i ...

  10. 实现将机器A上的程序包复制到机器B并更新的脚本

    一.前言 之前有写过如何在单台服务器上执行脚本自动更新程序包,但平时测试过程中相信大部分公司都是需要测试人员在服务器A上进行功能测试,测试通过后再将程序包更新到服务器B上进行安全测试或者性能测试:今天 ...