[深度学习] tf.keras入门5-模型保存和载入
目录
模型可以在训练中或者训练完成后保存。具体文档参考:https://tensorflow.google.cn/tutorials/keras/save_and_restore_models
设置
依赖项设置:
!pip install -q h5py pyyaml
模型建立:
from __future__ import absolute_import, division, print_function
import os
import tensorflow as tf
from tensorflow import keras
tf.__version__
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
# 模型创建模型
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])
return model
#创建模型
model = create_model()
model.summary()
基于checkpoints的模型保存
通过ModelCheckpoint模块来自动保存数据
#创建回调函数
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True, #只保存权重
verbose=1)
model = create_model()
model.fit(train_images, train_labels, epochs = 10,
validation_data = (test_images,test_labels),
callbacks = [cp_callback]) #保存模型
通过load_weight读取权重
#对全新没有训练的模型进行预测
model = create_model()
loss, acc = model.evaluate(test_images, test_labels)
print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) #11.4%
#载入权重参数后的模型
model.load_weights(checkpoint_path)
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.2
手动保存权重
# 保存权重
model.save_weights('./checkpoints/my_checkpoint')
#恢复模型
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #87.00%
整个模型保存
基于keras的HD5文件保存整个模型所有参数,优化器参数等。
#将整个模型保存为HDF5文件
model = create_model()
model.fit(train_images, train_labels, epochs=5)
model.save('my_model.h5')
#载入一个相同的模型
new_model = keras.models.load_model('my_model.h5')
new_model.summary()
loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.30%
总体代码
from __future__ import absolute_import, division, print_function
import os
import tensorflow as tf
from tensorflow import keras
tf.__version__
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
# 模型创建模型
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])
return model
#创建模型
model = create_model()
model.summary()
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
'''
#创建回调函数
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True, #只保存权重
verbose=1)
model = create_model()
model.fit(train_images, train_labels, epochs = 10,
validation_data = (test_images,test_labels),
callbacks = [cp_callback]) #保存模型
#对全新没有训练的模型进行预测
model = create_model()
loss, acc = model.evaluate(test_images, test_labels)
print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) #11.4%
#载入权重参数后的模型
model.load_weights(checkpoint_path)
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.2
# 保存权重
model.save_weights('./checkpoints/my_checkpoint')
#恢复模型
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #87.00%
'''
#将整个模型保存为HDF5文件
model = create_model()
model.fit(train_images, train_labels, epochs=5)
model.save('my_model.h5')
#载入一个相同的模型
new_model = keras.models.load_model('my_model.h5')
new_model.summary()
loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.30%
[深度学习] tf.keras入门5-模型保存和载入的更多相关文章
- [深度学习] tf.keras入门1-基本函数介绍
目录 构建一个简单的模型 序贯(Sequential)模型 网络层的构造 模型训练和参数评价 模型训练 模型的训练 tf.data的数据集 模型评估和预测 基本模型的建立 网络层模型 模型子类函数构建 ...
- [深度学习] tf.keras入门4-过拟合和欠拟合
过拟合和欠拟合 简单来说过拟合就是模型训练集精度高,测试集训练精度低:欠拟合则是模型训练集和测试集训练精度都低. 官方文档地址为 https://tensorflow.google.cn/tutori ...
- [深度学习] tf.keras入门3-回归
目录 波士顿房价数据集 数据集 数据归一化 模型训练和预测 模型建立和训练 模型预测 总结 回归主要基于波士顿房价数据库进行建模,官方文档地址为:https://tensorflow.google.c ...
- [深度学习] tf.keras入门2-分类
目录 Fashion MNIST数据库 分类模型的建立 模型预测 总体代码 主要介绍基于tf.keras的Fashion MNIST数据库分类, 官方文档地址为:https://tensorflow. ...
- 深度学习:Keras入门(一)之基础篇
1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结 ...
- 深度学习:Keras入门(一)之基础篇【转】
本文转载自:http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorfl ...
- 深度学习:Keras入门(一)之基础篇(转)
转自http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深 ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)【转】
本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么 ...
随机推荐
- SpringBoot (四) - 整合Mybatis,逆向工程,JPA
1.SpringBoot整合MyBatis 1.1 application.yml # 数据源配置 spring: datasource: driver-class-name: com.mysql.c ...
- 关于TP5模板输出时间戳问题--A non well formed numeric value encountered
某日.因为一个项目.控制器我是这么写的 1 /** 2 * get admin/Picture/index 3 * 显示所有图册信息 4 * @return view 5 */ 6 public fu ...
- 23.mixin类源码解析
mixin类用于提供视图的基本操作行为,注意mixin类提供动作方法,而不是直接定义处理程序方法 例如.get() .post(),这允许更灵活的定义,mixin从rest_framework.mix ...
- static 关键字分析
在java中static 关键字用途很广,可以修饰成员变量 方法 甚至类(静态内部类),这里不分析static 修饰类 static修饰的内容的运行顺序 java的程序执行之前有一个类的加载的过程,在 ...
- JS逆向实战3——AESCBC 模式解密
爬取某省公共资源交易中心 通过抓包数据可知 这个data是我们所需要的数据,但是已经通过加密隐藏起来了 分析 首先这是个json文件,我们可以用请求参数一个一个搜 但是由于我们已经知道了这是个json ...
- JS 学习笔记 (六) 函数式编程
1.函数闭包 1.1 概述 JavaScript采用词法作用域,函数的执行依赖于变量作用域,这个作用域是在函数定义时决定的,而不是函数调用时决定的. 为了实现这种词法作用域,JavaScript函数对 ...
- Burpsuite(科学版)安装教程
前言 BurpSuite是一款用于攻击web 应用程序的集成平台,在安全圈被称作"抓包神器".本文主要讲解 BurpSuite破解版的安装教程. 配置环境变量 BurpSuite是 ...
- java反序列化漏洞cc_link_one
CC-LINK-one 前言 这里也正式进入的java的反序列化漏洞了,简单介绍一下CC是什么借用一些官方的解释:Apache Commons是Apache软件基金会的项目,曾经隶属于Jakarta项 ...
- Complementary XOR
题目链接 题目大意: 给你两个字符串只有01组成,你可以选取区间[l, r],对字符串a在区间里面进行异或操作,对字符串b非区间值进行异或操作,问能否将两个字符串变为全0串.如果可以输出YES, 操作 ...
- 【iOS逆向】某车之家sign签名分析
阅读此文档的过程中遇到任何问题,请关注公众号[移动端Android和iOS开发技术分享]或加QQ群[309580013] 1.目标 分析某车之家sign签名算法的实现 2.操作环境 frida mac ...