Kruskal算法证明
 
  易证,对于一个无向加权连通图,总是存在一棵或以上的有限课生成树,而这些生成树中肯定存在至少一棵最小生成树。下面证明Kruskal算法构造的生成树是这些最小生成树中的一棵。
  设T为Kruskal算法构造出的生成树,U是G的最小生成树。如果T==U那么证明结束。如果T != U,我们就需要证明T和U的构造代价相同。由于T != U,所以一定存在k > 0条边存在于T中,却不在U中。接下来,我们做k次变换,每次从T中取出一条不在U中的边放入U,然后删除U一条不在T中的边,最后使T和U的边集相同。每次变换中,把T中的一条边e加入U,同时删除U中的一条边f。e、f按如下规则选取:a). e是在T中却不在U中的边的最小的一条边;b). e加入U后,肯定构成唯一的一个环路,令f是这个环路中的一条边,但不在T中。f一定存在,因为T中没有环路。
 
  这样的一次变换后,U仍然是一棵生成树。
  我们假设e权值小于f,这样变换后U的代价一定小于变换前U的代价,而这和我们之前假设U是最小生成树矛盾,因此e权值不小于f。
  再假设e权值大于f。由于f权值小于e,由Kruskal算法知,f在e之前从E中取出,但被舍弃了。一定是由于和权值小于等于f的边构成了环路。但是T中权值小于等于f(小于e)的边一定存在于U中,而f在U中却没有和它们构成环路,又推出矛盾。所以e权值不大于f。于是e权值等于f。
  这样,每次变换后U的代价都不变,所以K次变换后,U和T的边集相同,且代价相同,这样就证明了T也是最小生成树。由证明过程可以知道,最小生成树可以不是唯一的。
 
 
 
无向图G的所有最小生成树的边权集合相同

kruskal证明的更多相关文章

  1. 【图论】信手拈来的Prim,Kruskal和Dijkstra

    关于三个简单的图论算法 prim,dijkstra和kruskal三个图论的算法,初学者容易将他们搞混,所以放在一起了. prim和kruskal是最小生成树(MST)的算法,dijkstra是单源最 ...

  2. 最小生成树的Prim算法以及Kruskal算法的证明

    Prime算法的思路:从任何一个顶点开始,将这个顶点作为最小生成树的子树,通过逐步为该子树添加边直到所有的顶点都在树中为止.其中添加边的策略是每次选择外界到该子树的最短的边添加到树中(前提是无回路). ...

  3. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  4. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  5. 【BZOJ-2177】曼哈顿最小生成树 Kruskal + 树状数组

    2177: 曼哈顿最小生成树 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 190  Solved: 77[Submit][Status][Discu ...

  6. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  7. 学习笔记之 prim算法和kruskal算法

    ~. 最近数据结构课讲到了prim算法,然而一直使用kruskal算法的我还不知prim的思想,实在是寝食难安,于此灯火通明之时写此随笔,以祭奠我睡过去的数 据结构课. 一,最小生成树之prim pr ...

  8. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  9. Kruskal

    算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge). 算法过程: 1.将图各边按照权值进行排序 2找出权值最小的边,(条件 ...

随机推荐

  1. CF448C Painting Fence (贪心分治)

    题面 \(solution:\) 一道蛮水的分治题,但思想很不错(虽然我还是非常天真的以为是积木大赛原题,并且居然还有30分) 看到这个题目,根据贪心的一贯风格,我们肯定能想到将整个栅栏的下面某部分直 ...

  2. 编码实现字符串类CNString实现运算符重载

    题目描述: 编码实现字符串类CNString,该类有默认构造函数.类的拷贝函数.类的析构函数及运算符重载,需实现以下"="运算符."+"运算."[]& ...

  3. python模块介绍- binascii:二进制和ASCII互转以及其他进制转换

    20.1 binascii:二进制和ASCII互转作用:二进制和ASCII互相转换. Python版本:1.5及以后版本 binascii模块包含很多在二进制和ASCII编码的二进制表示转换的方法.通 ...

  4. 在Asp.Net Core中使用中间件保护非公开文件

    在企业开发中,我们经常会遇到由用户上传文件的场景,比如某OA系统中,由用户填写某表单并上传身份证,由身份管理员审查,超级管理员可以查看. 就这样一个场景,用户上传的文件只能有三种人看得见(能够访问) ...

  5. sum行列合计

    select sum(decode(cplb,'3',hj,0)) from lr_scsjdqdw t group by zcxmdm

  6. h5新API之WebStorage解决页面数据通信问题

    localStorage相信大家都不陌生,今天我们要讨论的不是怎么存储数据,获取数据.而是看看WebStorage的一些妙用,相信大家在开发中遇到过这样一个场景,一个页面中嵌套一个iframe,ifr ...

  7. java 持有对象 ListIterator用法

    package ch07; import java.io.*; import java.util.Iterator; import java.util.LinkedList; import java. ...

  8. Guice 依赖绑定

    Guice 依赖绑定 连接绑定(Linked Bingdings) 连接绑定是 Guice 最基本的一种绑定方式.这种绑定方式我们需要在自己定义的 Module 的 configure() 中编写绑定 ...

  9. VS Code 折腾记 - (6) 基本配置/快捷键定义/代码片段的录入(snippet)

    前言 本来分成三篇来写的,但是想了想没必要,大家都是聪明人...简单的东西点一下就晓得了. 基本配置 快捷键自定义(Ctrl+K Ctrl + S) 那个when支持条件表达式返回一个布尔值 支持的快 ...

  10. python 全栈开发,Day101(redis操作,购物车,DRF解析器)

    昨日内容回顾 1. django请求生命周期? - 当用户在浏览器中输入url时,浏览器会生成请求头和请求体发给服务端 请求头和请求体中会包含浏览器的动作(action),这个动作通常为get或者po ...