k-nearest neighbors algorithm - Wikipedia

  • https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
  • Not to be confused with k-means clustering.
  • In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric method used for classification and regression.[1] In both cases, the input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression.
  • k-NN is a type of instance-based learning, or lazy learning, where the function is only approximated locally and all computation is deferred until classification. The k-NN algorithm is among the simplest of all machine learning algorithms.

学习笔记之scikit-learn - 浩然119 - 博客园

  • https://www.cnblogs.com/pegasus923/p/9997485.html
  • 1.6. Nearest Neighbors — scikit-learn 0.20.2 documentation
    • https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification

Machine Learning with Python: k-Nearest Neighbor Classifier in Python

  • https://www.python-course.eu/k_nearest_neighbor_classifier.php

Refining a k-Nearest-Neighbor classification

  • https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html

1.13. Feature selection — scikit-learn 0.20.2 documentation

  • https://scikit-learn.org/stable/modules/feature_selection.html

K近邻法(KNN)原理小结 - 刘建平Pinard - 博客园

  • http://www.cnblogs.com/pinard/p/6061661.html
  • 1. KNN算法三要素
  • 2. KNN算法蛮力实现
  • 3. KNN算法之KD树实现原理
  • 4. KNN算法之球树实现原理
  • 5. KNN算法的扩展
  • 6. KNN算法小结

scikit-learn K近邻法类库使用小结 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/6065607.html
  • 1. scikit-learn 中KNN相关的类库概述
  • 2. K近邻法和限定半径最近邻法类库参数小结
  • 3. 使用KNeighborsClassifier做分类的实例

特征工程之特征选择 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/9032759.html

特征工程之特征表达 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/9061549.html

特征工程之特征预处理 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/9093890.html

精确率与召回率,RoC曲线与PR曲线 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/5993450.html

k selection

  • 设定区间范围,e.g. [1, 25],测试所有k再比较结果

Feature selection

  • ablation study : removing some “feature” of the model or algorithm, and seeing how that affects performance.

    • 注意如果去掉一个feature之后结果并没有变化,不能说明这个feature没用,原因可能是:

      • conditionally independant of the given feature : 其他feature对结果的影响跟它一样
      • 不相关feature
  • test with specified features only
    • 注意一个feature有可能跟其他feature一起配合才对结果有positive impact
  • test with all combination of features
    • 最全面的方法是覆盖所有组合,但是费时
    • 折中的方法是从上面两种测试结果中选择出一个小范围有用的feature list,然后测试feature list,跟all features比较性能

学习笔记之k-nearest neighbors algorithm (k-NN)的更多相关文章

  1. [机器学习系列] k-近邻算法(K–nearest neighbors)

    C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...

  2. 机器学习算法-K-NN的学习 /ML 算法 (K-NEAREST NEIGHBORS ALGORITHM TUTORIAL)

    1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是 ...

  3. 2 kNN-K-Nearest Neighbors algorithm k邻近算法(一)

    给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签.简称kNN.通常k是不大于20的整数,这里的距离一般是欧式距离 ...

  4. 2 kNN-K-Nearest Neighbors algorithm k邻近算法(二)

    2.3 示例:手写识别系统 2.3 .1 准备数据:将图像转换为测试向量 训练样本:trainingDigits 2000个例子,每个数字大约200个样本 测试数据:testDigits 大约900个 ...

  5. [PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 ...

  6. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  7. 学习笔记之scikit-learn

    scikit-learn: machine learning in Python — scikit-learn 0.20.0 documentation https://scikit-learn.or ...

  8. Machine Learning In Action 第二章学习笔记: kNN算法

    本文主要记录<Machine Learning In Action>中第二章的内容.书中以两个具体实例来介绍kNN(k nearest neighbors),分别是: 约会对象预测 手写数 ...

  9. 学习笔记——k近邻法

    对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...

随机推荐

  1. C++学习(八)(C语言部分)之 图形库

    有关图形库的学习笔记 1.安装 ww.easys.cn 2.创建win32控制台应用程序 .cpp文件(图形库必须创建cpp文件) *重点 3.安装好后 重启一下vs 图形库 是一些函数的集合 作用是 ...

  2. 公钥与私钥,HTTPS详解 转载

    1.公钥与私钥原理1)鲍勃有两把钥匙,一把是公钥,另一把是私钥2)鲍勃把公钥送给他的朋友们----帕蒂.道格.苏珊----每人一把.3)苏珊要给鲍勃写一封保密的信.她写完后用鲍勃的公钥加密,就可以达到 ...

  3. nginx屏蔽某一ip的访问

    假设我们想禁止访问nginx次数最多的ip访问我们的网站 我们可以先查出那个ip访问次数最多 awk '{print $1}' nginx.access.log |sort |uniq -c|sort ...

  4. day45 html 初识,常见命令

    Web服务本质 浏览器发请求 --> HTTP协议 --> 服务端接收请求 --> 服务端返回响应 --> 服务端把HTML文件内容发给浏览器 --> 浏览器渲染页面 浏 ...

  5. oracle-闪回技术2

    闪回版本查询,用到了附加日志 闪回事务查询 http://blog.csdn.net/laoshangxyc/article/details/12405459 这个博客的备份与恢复可以参考 ##### ...

  6. Java中的数组与集合

    此文转载自:http://student-lp.iteye.com/blog/2082362 在java编程的过程中,我们不能确定某一类型的对象到底会需要多少,为了解决这个问题,java提供了容纳对象 ...

  7. ThinkPHP3 和 ThinkPHP5 不是一个团队做的

    ThinkPHP3 和 ThinkPHP5 不是一个团队做的 发现流年好幽默. 这个帖子源于一个 ThinkPHP 用户被客户投诉,然后反过来骂 ThinkPHP 垃圾. 不过最后想通了道歉. 开源需 ...

  8. 一个小工具 TcpTextListener

    项目地址 :    https://github.com/kelin-xycs/TcpTextListener 这是一个 可以 监听 Tcp (Http) 传输数据 的 小工具 . 不是 抓包 .不要 ...

  9. Jenkins 配置用户权限错误导致无法登录解决方案

    最初配置Jenkins的用户管理权限时,因为不熟悉很容易将用户角色配置错误,导致配置用户后无法登录系统: 登录系统时候提示"Access Denied": 解决办法: 进入Jenk ...

  10. centos7 tomcat自启动

    第一步: vim /lib/systemd/system/tomcat.service [Unit] Description=tomcat After=network.target [Service] ...