下面我们抛开1中的问题。介绍拉格朗日对偶。这一篇中的东西都是一些结论,没有证明。

假设我们有这样的问题:$min_{w}$ $f(w)$,使得满足:(1)$g_{i}(w)\leq 0,1\leq i \leq k$,(2)$h_{i}(w)= 0,1\leq i \leq l$

我们定义$L(w,\alpha ,\beta )=f(w)+\sum_{i=1}^{k}\alpha_{i}g_{i}(w)+\sum_{i=1}^{l}\beta_{i}h_{i}(w)$,其中$\alpha,\beta$被称作拉格朗日因子

第一部分:

设$\theta _{p}(w)=max_{\alpha,\beta:\alpha\geq 0}L(w,\alpha ,\beta )$,可以证明当$\theta $满足问题描述中的两个条件时,我们有$\theta _{p}(w)=f(w)$,否则$\theta _{p}(w)=+oo$

然后我们定义$p^{*}=\underset{w}{min}\theta_{p}(w)=\underset{w}{min} \underset{\alpha,\beta:\alpha\geq 0}{max}L(w,\alpha,\beta)$,那么$p^{*}$就是原问题的解。

第二部分:

设$\theta_{D}(\alpha,\beta)=\underset{w}{min}L(w,\alpha,\beta)$

$d^{*}=\underset{\alpha,\beta:\alpha\geq 0}{max} \theta_{D}(\alpha,\beta)=\underset{\alpha,\beta:\alpha\geq 0}{max} \underset{w}{min}L(w,\alpha,\beta)$

总有$d^{*}\leq p^{*}$成立。当函数$g$和函数$f$是凸函数,$h$是线性函数时,等号成立。设取得等号成立时,各参数的值为$w^{*},\alpha^{*},\beta^{*}$,那么,有下面的式子成立:
(1)$\frac{\partial }{\partial w_{i}}L(w^{*},\alpha^{*},\beta^{*})=0,1\leq i \leq n$
(2)$\frac{\partial }{\partial \beta_{i}}L(w^{*},\alpha^{*},\beta^{*})=0,1\leq i \leq l$
(3)$\alpha^{*}g_{i}(w^{*})=0,1\leq i \leq k$
(4)$g_{i}(w^{*}) \leq 0,1\leq i \leq k$
(5)$\alpha^{*} \geq 0,1\leq i \leq k$

SVM学习笔记2-拉格朗日对偶的更多相关文章

  1. SVM学习笔记(一)

    支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...

  2. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  3. SVM学习笔记4-核函数和离群点的处理

    核函数在svm里,核函数是这样定义的.核函数是一个n*n(样本个数)的矩阵,其中:$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$ ...

  4. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  5. 机器学习6—SVM学习笔记

    机器学习牛人博客 机器学习实战之SVM 三种SVM的对偶问题 拉格朗日乘子法和KKT条件 支持向量机通俗导论(理解SVM的三层境界) 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系 ...

  6. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  7. SVM学习笔记-线性支撑向量机

    对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc= ...

  8. SVM学习笔记5-SMO

    首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\a ...

  9. SVM学习笔记3-问题转化

    在1中,我们的求解问题是:$min_{w,b}$ $\frac{1}{2}||w||^{2}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1 ,1 \leq i \leq n$ 设 ...

随机推荐

  1. HDU 3117 Fibonacci Numbers(矩阵)

    Fibonacci Numbers [题目链接]Fibonacci Numbers [题目类型]矩阵 &题解: 后4位是矩阵快速幂求,前4位是用log加Fibonacci通项公式求,详见上一篇 ...

  2. hibernate中configuration和配置文件笔记

    hibernate的核心类和接口 Configuration类 作用:(1)读取hibernate.cfg.xml文件 (2)管理对象关系映射文件<mapping resource=" ...

  3. Widget Factory (高斯消元解线性方程组)

    The widget factory produces several different kinds of widgets. Each widget is carefully built by a ...

  4. Maven的配置指南

    Maven的配置指南  配置Maven Maven配置发生在3个级别: 项目 - 大多数静态配置发生在pom.xml中 安装 - 这是Maven安装时发生的一次性的配置过程 用户 - 这是Maven提 ...

  5. skynet对Windows环境支持的版本:Windows版skynet

    https://github.com/sanikoyes/skynet.git Skynet Skynet is a lightweight online game framework, and it ...

  6. MySql 存储过程 退出

    mysql不支持quit, exit或return的方式退出编写存储过程时,为了业务规则需要,我们可能需要提前退出存储过程那么,我们可以利用leave label方式模拟实现quit退出的效果应用示例 ...

  7. 异常检测LOF

    局部异常因子算法-Local Outlier Factor(LOF)在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊 ...

  8. 关于SqlCommand对象的2个方法:ExecuteNonQuery 方法和ExecuteScalar方法

    1.SqlCommand.ExecuteNonQuery 方法 对连接执行 Transact-SQL 语句并返回受影响的行数. 语法:public override int ExecuteNonQue ...

  9. 20165215 2017-2018-2 《Java程序设计》第九周学习总结

    20165215 2017-2018-2 <Java程序设计>第九周学习总结 教材学习内容总结 URL类 URL 类是 java.net 包中的一个重要的类,使用 URL 创建对象的应用程 ...

  10. Linux基础命令---文本统计wc

    wc 统计文件的字节数.单词数.行数. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法         wc [选项]  f ...