题解——洛谷P4767 [IOI2000]邮局(区间DP)
这题是一道区间DP
思维难度主要集中在如何预处理距离上
由生活经验得,邮局放在中间显然最优
所以我们可以递推求出\( w[i][j] \)表示i,j之间放一个邮局得距离
然后设出状态转移方程
设\( dp[i][j] \)表示从1开始到i放j个邮局的最短距离
然后转移为:\( dp[i][j]=min(dp[k][j-1]+w[k+1][j],dp[i][j]),i \le k \le j \)
显然是个\( O(n^{3}) \)的DP
能够得40分
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int w[][],dp[][],n,p,x[];
signed main(){
scanf("%lld %lld",&n,&p);
for(int i=;i<=n;i++)
scanf("%lld",&x[i]);
sort(x+,x+n+);
memset(w,0x3f,sizeof(w));
for(int i=;i<=n;i++)
w[i][i]=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
w[i][j]=w[i][j-]+x[j]-x[(i+j)/];
memset(dp,0x3f,sizeof(dp));
for(int i=;i<=n;i++)
dp[i][]=w[][i];
for(int i=;i<=p;i++)
dp[i][i]=;
for(int i=;i<=p;i++)
for(int j=i+;j<=n;j++)
for(int k=i-;k<=j;k++){
dp[j][i]=min(dp[j][i],dp[k][i-]+w[k+][j]);
//5 printf("%d %d %d %d\n",i,j,k,dp[j][i]);
}
/*for(int l=1;l<=n;l++)
for(int i=1;i+l<=n;++)
printf("w[%d][%d]=%d\n",i,i+l,w[i][i+l]);*/
printf("%lld\n",dp[n][p]);
return ;
}
然后就是优化
我们可以发现一些显然的性质
\( w[i^{'}][j] \le w[i][j^{'}] , i \le i^{'} \le j \le j^{'} \)
\( w[i][j]+w[i^{'}][j^{'}] \le w[i^{'}][j]+w[i][j^{'}] \)
然后就可以用四边形不等式优化DP了!
然后QwQ
复杂度\( O(n^{2}) \)
没了
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int w[][],dp[][],n,p,x[],s[][];
signed main(){
scanf("%lld %lld",&n,&p);
for(int i=;i<=n;i++)
scanf("%lld",&x[i]);
sort(x+,x+n+);
memset(w,0x3f,sizeof(w));
for(int i=;i<=n;i++)
w[i][i]=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
w[i][j]=w[i][j-]+x[j]-x[(i+j)/];
memset(dp,0x3f,sizeof(dp));
for(int i=;i<=n;i++)
dp[i][]=w[][i],s[i][]=;;
for(int i=;i<=p;i++)
dp[i][i]=;
for(int i=;i<=p;i++){
s[n+][i]=n;
for(int j=n;j>=i+;j--)
for(int k=s[j][i-];k<=s[j+][i];k++)
if(dp[j][i]>dp[k][i-]+w[k+][j]){
dp[j][i]=dp[k][i-]+w[k+][j];
s[j][i]=k;
//5 printf("%d %d %d %d\n",i,j,k,dp[j][i]);
}
}
/*for(int l=1;l<=n;l++)
for(int i=1;i+l<=n;++)
printf("w[%d][%d]=%d\n",i,i+l,w[i][i+l]);*/
printf("%lld\n",dp[n][p]);
return ;
}
题解——洛谷P4767 [IOI2000]邮局(区间DP)的更多相关文章
- 洛谷P2470 [SCOI2007]压缩(区间dp)
题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...
- 洛谷P1018乘积最大——区间DP
题目:https://www.luogu.org/problemnew/show/P1018 区间DP+高精,注意初始化和转移的细节. 代码如下: #include<iostream> # ...
- 洛谷P1220关路灯——区间DP
题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...
- 洛谷P1040 加分二叉树(区间dp)
P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...
- 洛谷 P1080 石子合并 ( 区间DP )
题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...
- 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$
正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...
- 洛谷P1063能量项链(区间dp)
题目描述: 给定一串序列x[],其中的每一个Xi看作看作一颗珠子,每个珠子包含两个参数,head和tail,前一颗的tail值是后一个的head值,珠子呈现环形(是一条项链),所以最后一颗的tail是 ...
- 洛谷 P1043 数字游戏 区间DP
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- 洛谷 P1220 关路灯 区间DP
题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...
随机推荐
- Linux 运维测试及第三应用及测试工具
一 .第三方应用及测试工具链接地址 https://pan.baidu.com/s/1rLQ5NCZvxcy93YQ4fGFaBQ 1.linux LSI系列raid卡监测工具 1)使用参数详解链接: ...
- 【安装虚拟机一】配置VMware
安装软件 VMware 10 CentOS-6.5-x86_64-minimal.iso 第一步:打开VMware 10 主页选择 “创建新的虚拟机” 第二步:选择自定义设置 第三步:设置虚拟机兼容 ...
- python相关工具
1.matlab与python之间的数据传递 import scipy.io as sio import numpy as np ###下面是讲解python怎么读取.mat文件以及怎么处理得到的 ...
- 20165215 2017-2018-2 《Java程序设计》第7周学习总结
20165215 2017-2018-2 <Java程序设计>第七周学习总结 教材学习内容总结 chapter11 下载安装MySQL服务器 启动MySQL数据库服务器 在bin子目录中, ...
- android使用inject需要注意的地方
android使用inject需要注意的地方1.viewmodel里面添加注解@Inject FavoritesDBManager mFavoritesDBManager; 2.Component里面 ...
- android textview字体加粗 Android studio最新水平居中和垂直居中
android textview字体加粗 Android studio最新水平居中和垂直居中 Android中字体加粗在xml文件中使用android:textStyle=”bold”但是不能将中文设 ...
- gitlab提交内容关联到slack通知
gitlab提交内容关联到slack通知 https://docs.gitlab.com/ee/user/project/integrations/slack.html 首先去slack做相关的设置 ...
- mac电脑复制粘贴使用command+c command+v
mac电脑复制粘贴使用command+c command+v系统偏好设置--键盘--修饰键(右下角),将ctrl键和command键的功能对换一下即可用ctrl+c ctrl+v复制粘贴缺点:所有的c ...
- 多选插件multiselect.js
官方网址:http://loudev.com/ html: <html> <head> <link href="path/to/multiselect.css& ...
- C++11 正则表达式简单运用
正则表达式(regular expression)是计算机科学中的一个概念,又称规则表达式,通常简写为regex.regexp.RE.regexps.regexes.regexen. 正则表达式是一种 ...