Spark MLlib 之 aggregate和treeAggregate从原理到应用
在阅读spark mllib源码的时候,发现一个出镜率很高的函数——aggregate和treeAggregate,比如matrix.columnSimilarities()中。为了好好理解这两个方法的使用,于是整理了本篇内容。
由于treeAggregate是在aggregate基础上的优化版本,因此先来看看aggregate是什么.
更多内容参考我的大数据学习之路
aggregate
先直接看一下代码例子:
import org.apache.spark.sql.SparkSession
object AggregateTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local[*]").appName("tf-idf").getOrCreate()
spark.sparkContext.setLogLevel("WARN")
// 创建rdd,并分成6个分区
val rdd = spark.sparkContext.parallelize(1 to 12).repartition(6)
// 输出每个分区的内容
rdd.mapPartitionsWithIndex((index:Int,it:Iterator[Int])=>{
Array((s" $index : ${it.toList.mkString(",")}")).toIterator
}).foreach(println)
// 执行agg
val res1 = rdd.aggregate(0)(seqOp, combOp)
}
// 分区内执行的方法,直接加和
def seqOp(s1:Int, s2:Int):Int = {
println("seq: "+s1+":"+s2)
s1 + s2
}
// 在driver端汇总
def combOp(c1: Int, c2: Int): Int = {
println("comb: "+c1+":"+c2)
c1 + c2
}
}
这段代码的主要目的就是为了求和。考虑到spark分区并行计算的特性,在每个分区独立加和,最后再汇总加和。
过程可以参考下面的图片:
首先看一下map阶段,即在每个分区内计算加和。初始情况如蓝色方块所示,内容为:
分区号:里面的内容
如,0分区内的数据为6和8
当执行seqop时,会说先用初始值0开始遍历累加,原理类似如下:
rdd.mapPartitions((it:Iterator)=>{
var sum = init_value // 默认为0
it.foreach(sum + _)
sum
})
因此屏幕上会出现下面的内容,由于分区之间是并行的,所以最后的结果是乱序的:
seq: 0:6
seq: 0:1
seq: 0:3
seq: 1:9
seq: 3:10
seq: 0:2
seq: 0:5
seq: 5:7
seq: 12:12
seq: 0:4
seq: 4:11
seq: 6:8
计算完成后,依次遍历每个分区结果,进行累加:
comb: 0:10
comb: 10:13
comb: 23:2
comb: 25:24
comb: 49:15
comb: 64:14
aggregate的源码也比较简单:
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
val cleanSeqOp = sc.clean(seqOp)
val cleanCombOp = sc.clean(combOp)
val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
sc.runJob(this, aggregatePartition, mergeResult)
jobResult
}
treeAggregate
treeAggregate在aggregate的基础上做了一些优化,因为aggregate是在每个分区计算完成后,把所有的数据拉倒driver端,进行统一的遍历合并,这样如果数据量很大,在driver端可能会OOM。
因此treeAggregate在中间多加了一层合并。
先来看看代码,没有任何的变化:
import org.apache.spark.sql.SparkSession
object TreeAggregateTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local[*]").appName("tf-idf").getOrCreate()
spark.sparkContext.setLogLevel("WARN")
val rdd = spark.sparkContext.parallelize(1 to 12).repartition(6)
rdd.mapPartitionsWithIndex((index:Int,it:Iterator[Int])=>{
Array(s" $index : ${it.toList.mkString(",")}").toIterator
}).foreach(println)
val res1 = rdd.treeAggregate(0)(seqOp, combOp)
println(res1)
}
def seqOp(s1:Int, s2:Int):Int = {
println("seq: "+s1+":"+s2)
s1 + s2
}
def combOp(c1: Int, c2: Int): Int = {
println("comb: "+c1+":"+c2)
c1 + c2
}
}
输出的结果则发生了变化,首先分区内的操作不变:
3 : 3,10
2 : 2
0 : 6,8
1 : 1,9
4 : 4,11
5 : 5,7,12
seq: 0:3
seq: 0:6
seq: 3:10
seq: 6:8
seq: 0:2
seq: 0:1
seq: 1:9
seq: 0:4
seq: 4:11
seq: 0:5
seq: 5:7
seq: 12:12
...
在合并的时候发生了 变化:
comb: 10:13
comb: 23:24
comb: 14:2
comb: 16:15
comb: 47:31
配合下面的流程图,可以更好的理解:
搭配treeAggregate的源码来看一下:
def treeAggregate[U: ClassTag](zeroValue: U)(
seqOp: (U, T) => U,
combOp: (U, U) => U,
depth: Int = 2): U = withScope {
require(depth >= 1, s"Depth must be greater than or equal to 1 but got $depth.")
if (partitions.length == 0) {
Utils.clone(zeroValue, context.env.closureSerializer.newInstance())
} else {
// 这里都没什么变化,在分区中遍历数据累加
val cleanSeqOp = context.clean(seqOp)
val cleanCombOp = context.clean(combOp)
val aggregatePartition =
(it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
var partiallyAggregated = mapPartitions(it => Iterator(aggregatePartition(it)))
// 关键是这下面的内容 !!!!
// 首先获得当前的分区数
var numPartitions = partiallyAggregated.partitions.length
// 计算合适的并行度,我这里相当于6^(1/2),也就是2.4左右,ceill向上取整后变成3.
// max(3,2)得到最后的结果为3。即每个树的分枝有3个叶子节点
val scale = math.max(math.ceil(math.pow(numPartitions, 1.0 / depth)).toInt, 2)
// 遍历分区,通过对scale取模进行合并计算
// 这里判断一下,当前的分区数是否还够分。如果少于条件值 scale+(p/scale),就停止分区
while (numPartitions > scale + math.ceil(numPartitions.toDouble / scale)) {
numPartitions /= scale
val curNumPartitions = numPartitions
// 重新定义分区id,并按照分区id重新分区,执行合并计算
partiallyAggregated = partiallyAggregated.mapPartitionsWithIndex {
(i, iter) => iter.map((i % curNumPartitions, _))
}.reduceByKey(new HashPartitioner(curNumPartitions), cleanCombOp).values
}
// 最后统计结果
partiallyAggregated.reduce(cleanCombOp)
}
}
spark中的应用
// matrix求相似度
def columnSimilarities(threshold: Double): CoordinateMatrix = {
... columnSimilaritiesDIMSUM(computeColumnSummaryStatistics().normL2.toArray, gamma)
}
// 统计每一个向量的相关数据,里面包含了min max 等等很多信息
def computeColumnSummaryStatistics(): MultivariateStatisticalSummary = {
val summary = rows.treeAggregate(new MultivariateOnlineSummarizer)(
(aggregator, data) => aggregator.add(data),
(aggregator1, aggregator2) => aggregator1.merge(aggregator2))
updateNumRows(summary.count)
summary
}
了解了treeAggregate之后,后续就可以看matrix的并行求解相似度的源码了!敬请期待吧...
参考
Spark MLlib 之 aggregate和treeAggregate从原理到应用的更多相关文章
- Spark MLlib 之 大规模数据集的相似度计算原理探索
无论是ICF基于物品的协同过滤.UCF基于用户的协同过滤.基于内容的推荐,最基本的环节都是计算相似度.如果样本特征维度很高或者<user, item, score>的维度很大,都会导致无法 ...
- 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...
- Spark MLlib特征处理:OneHotEncoder OneHot编码 ---原理及实战
http://m.blog.csdn.net/wangpei1949/article/details/53140372 Spark MLlib特征处理:OneHotEncoder OneHot编码 - ...
- Spark MLlib LDA 基于GraphX实现原理及源代码分析
LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类.眼下,广泛运用在文本主题聚类中. LDA的开源实现有 ...
- 《Spark MLlib机器学习实践》内容简介、目录
http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...
- Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使 ...
- Spark MLlib LDA 源代码解析
1.Spark MLlib LDA源代码解析 http://blog.csdn.net/sunbow0 Spark MLlib LDA 应该算是比較难理解的,当中涉及到大量的概率与统计的相关知识,并且 ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...
随机推荐
- win7设置固定IP
正文: 你必须知道你的路由器网关,一般是192.168.1.1(或192.168.0.1) 按传统的来:开始——控制面板——网络和共享中心——更改适配器设置.一般来讲,这里应该有两个图标,一个是有线网 ...
- LeetCode(55): 跳跃游戏
Medium! 题目描述: 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1, ...
- cf803c 数论
细节很多的题 #include<bits/stdc++.h> using namespace std; #define ll long long int main(){ ll n,k,tm ...
- (二)使用CXF开发WebService服务器端接口
CXF作为java领域主流的WebService实现框架,Java程序员有必要掌握它. CXF主页:http://cxf.apache.org/ 简介:百度百科 今天的话,主要是用CXF来开发下Web ...
- python 全栈开发,Day103(微信消息推送,结算中心业务流程)
昨日内容回顾 第一部分:考试题(Python基础) 第二部分:路飞相关 1. 是否遇到bug?难解决的技术点?印象深刻的事? - orm操作费劲 - 最开始学习路由系统时候,匹配规则: 答案一: 有, ...
- python 全栈开发,Day90(Vue组件,前端开发工具包)
昨日内容回顾 1. Vue使用 1. 生成Vue实例和DOM中元素绑定 2. app.$el --> 取出该vue实例绑定的DOM标签 3. app.$data --> 取出该vue实例绑 ...
- 基于Linux平台的自动化运维Devops-----之自动化系统部署
一.自动化运维的背景网站业务上线,需要运维人员在短时间内完成几百台服务器部署,包括系统安装.系统初始化.软件的安装与配置.性能的监控......所谓运维自动化,即在最少的人工干预下,利用脚本与第三方工 ...
- DFS基础题
hdu 1241 油田 裸DFS 题意:@代表油田 8个方向上还有@就相连 相当于求图中连通子图的个数Sample Input1 1 // n m*3 5*@*@***@***@*@*1 8@@** ...
- Codeforces 739C Alyona and towers 线段树
Alyona and towers 这个题写起来真的要人命... 我们发现一个区间被加上一个d的时候, 内部的结构是不变的, 改变的只是左端点右端点的值, 这样就能区间合并了. 如果用差分的话会简单一 ...
- Python高级正则
import re p = re.compile("^[0-9]") m = p.match('13435aSAdb') print(m.group()) 一.上面的第二行和第三行 ...