https://vjudge.net/contest/218366#problem/B

要不是在数学题专题里,我估计就盲目搜索了。10^18范围1s应该过不去。

再细看能感觉到是gcd的变形,但是具体结论说不上来。

推导参考:https://blog.csdn.net/LuRiCheng/article/details/54729531

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define IO ios::sync_with_stdio(false);cin.tie(0);
#define INF 0x3f3f3f3f
#define MAXN 100010
const int MOD=1e9+;
typedef long long ll;
using namespace std;
ll n, a, b, x, y;
ll gcd(ll a, ll b)
{
if(a%b == )
return b;
return gcd(b, a%b);
}
int main()
{
IO;
cin >> n;
while(n--){
cin >> a >> b >> x >> y;
if(gcd(a, b) == gcd(x, y))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return ;
}

B - 可能的路径(gcd变形)的更多相关文章

  1. POJ 2594 Treasure Exploration(最小路径覆盖变形)

    POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...

  2. 第七届蓝桥杯C-B-10-最大比例/gcd变形

    最大比例 X星球的某个大奖赛设了M级奖励.每个级别的奖金是一个正整数.并且,相邻的两个级别间的比例是个固定值.也就是说:所有级别的奖金数构成了一个等比数列.比如:16,24,36,54其等比值为:3/ ...

  3. 51nod 1247 可能的路径(gcd)

    传送门 题意 略 分析 有以下结论 \(1.(x,y)->(y,x)\) \(2.(x,y)->(a,b)==>(a,b)->(x,y)\) 证明 做如下变换 \((a,b)- ...

  4. TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7019   Accepted: 2387 De ...

  5. H5新特性-canvas绘图--渐变对象路径(最复杂)--图片--变形操作

    今天的目标 3.1:canvas绘图--(重点掌握:渐变对象.路径.图片.变形) 3.2:canvas绘图--渐变对象 线性渐变: linearGradient 径向渐变: var g = ctx.c ...

  6. CF1101D GCD Counting(数学,树的直径)

    几个月的坑终于补了…… 题目链接:CF原网  洛谷 题目大意:一棵 $n$ 个点的树,每个点有点权 $a_i$.一条路径的长度定义为该路径经过的点数.一条路径的权值定义为该路径经过所有点的点权的 GC ...

  7. codeforce453DIV2——D. GCD of Polynomials

    题意 给出n(1–150). 输出两个多项式A,B从常数到最高次的系数,使得对两个多项式求gcd时,恰好经过n步得到结果. 多项式的gcd一步是指(A(x),B(x))变成(B,A mod B)的过程 ...

  8. GCD Counting Codeforces - 990G

    https://www.luogu.org/problemnew/show/CF990G 耶,又一道好题被我浪费掉了,不会做.. 显然可以反演,在这之前只需对于每个i,统计出有多少(x,y),满足x到 ...

  9. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

随机推荐

  1. Python中的一些小语法

    目录: 生成随机数 将一个字符串变为datetime类型,并且获取星期几 1.生成随机数 假设我们要操作的list如下: >>> import random >>> ...

  2. Javascript中Json对象与Json字符串互相转换方法汇总(4种转换方式)

    1.Json对象转Json字符串 JSON.stringify(obj); 2.Json字符串传Json对象 JSON.parse(str);//第一种 $.parseJSON(str);//第二种, ...

  3. Vue项目之背景图片打包后路径错误

    第一种方法: 原因: 首先,出错点在url-loader上面. // url-loader配置 // build/webpck.base.conf.js { test: /\.(png|jpe?g|g ...

  4. vue2之 missing param for named route "xxxx"

    场景: 解决方法:可以做的是将其包含router-link在适当的位置v-if,以便在您的异步数据实际到达之前不会尝试渲染. html代码: <div id="app" cl ...

  5. Redis、RabbitMQ、Memcached

    知识目录: Memcached Redis RabbitMQ Memcached 回到顶部 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中 ...

  6. python 全栈开发,Day118(django事务,闭包,客户管理,教学管理,权限应用)

    昨日内容回顾 一.django事务 什么是事务 一系列将要发生或正在发生的连续操作. 作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行. 事务处理可以确保除非事务性单元内的所有操 ...

  7. python 全栈开发,Day98(路飞学城背景,django ContentType组件,表结构讲解)

    昨日内容回顾 1. 为什么要做前后端分离? - 前后端交给不同的人来编写,职责划分明确. - API (IOS,安卓,PC,微信小程序...) - vue.js等框架编写前端时,会比之前写jQuery ...

  8. Android各国语言对照表(values-xxx)

    eg: 阿拉伯 Arabic  SA values-ar Android各国语言对照表https://blog.csdn.net/jiangguohu1/article/details/5044014 ...

  9. Ubuntu 16.04 LTS 搭建ftp服务器

    其实我之前搭建好了,但是最近我上来看好像跟没搭建一样呢,于是我从新搭建一遍? 我的ubuntu版本: cat /etc/issue Ubuntu 16.04 LTS \n \l 1.安装vsftpd( ...

  10. jQuery插件实践之轮播练习(二)

    所有文章搬运自我的个人主页:sheilasun.me 上一篇中学习了jQuery插件的写法,这篇该着手实现啦.首先明确一下轮播要具备哪些功能: 可以点击"向后"按钮向后翻页 可以点 ...