奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
      这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。

原图及数学公式取自:

http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。

脚本代码:

[ScriptLines]
u=a*j + b*i + c*j*k
v=d*j - k + e*i*k
w=f*k + g*i*j
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=1.897000
b=-3.780000
c=-14.000000
d=-11.291203
e=-1.000000
f=5.580000
g=1.000000
i=0.100000
j=0.100000
k=0.200000
t=0.000200

混沌图像:

奇怪吸引子---LiuChen的更多相关文章

  1. 奇怪吸引子---YuWang

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. 奇怪吸引子---WimolBanlue

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  3. 奇怪吸引子---WangSun

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  4. 奇怪吸引子---TreeScrollUnifiedChaoticSystem

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  5. 奇怪吸引子---Thomas

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  6. 奇怪吸引子---ShimizuMorioka

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  7. 奇怪吸引子---Sakarya

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  8. 奇怪吸引子---Russler

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  9. 奇怪吸引子---Rucklidge

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

随机推荐

  1. Vue2.0 探索之路——生命周期和钩子函数的一些理解 - JS那些事儿

    在使用vue一个多礼拜后,感觉现在还停留在初级阶段,虽然知道怎么和后端做数据交互,但是对于mounted这个挂载还不是很清楚的.放大之,对vue的生命周期不甚了解.只知道简单的使用,而不知道为什么,这 ...

  2. LeetCode(5):最长回文子串

    Medium! 题目描述: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 长度最长为1000. 示例: 输入: "babad" 输出: "bab&quo ...

  3. linux ubuntu 指令

    查找文件:ls -lrt /java 用于查找java文件信息 https://ipcmen.com/ls编辑/etc/profilewen文件,在文件末尾添加export JAVA_HOME=/us ...

  4. python 全栈开发,Day54(node.js初识)

    一.什么是Node.js 简单的说 Node.js 就是运行在服务端的 JavaScript.Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台.Node.js是一个事 ...

  5. 使用spring-boot-starter-data-jpa 怎么配置使运行时输出SQL语句

    在 application.properties 中加入以下配置 spring.jpa.show-sql=true

  6. Web应用程序项目XXXX已配置为使用IIS。无法访问IIS 元数据库。您没有足够的特权访问计算机上的IIS

    错误图片:

  7. LINQ学习之旅 C#3.0新特性(一)

    一:C#3.0新语言的特性 自动属性(Auto-Implemented Properties) 隐含类型局部变量(Local Variable Type Inference) 匿名类型(Anonymo ...

  8. poj 1961 (求字符串中的重复子串)

    Sample Input 3aaa12aabaabaabaab0Sample Output Test case #12 23 3 Test case #22 2 //aa有2个a6 2 //aabaa ...

  9. 乐观锁和悲观锁及CAS实现

    乐观锁与悲观锁 悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁.传统的关系型数据库里边就用到了很多这种锁机制, ...

  10. Hadoop Yarn环境配置

    抄一个可行的Hadoop Yarn环境配置.用的官方的2.2.0版本. http://www.jdon.com/bigdata/yarn.html Hadoop 2.2新特性 将Mapreduce框架 ...