[No0000145]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈2/4
前言
简介
参数,大画面
- 栈会分配一块内存空间给程序执行所需要的信息(我们叫它栈结构Stack Frame)。一个栈结构包含方法调用地址(指针),它以一个GOTO指令的形式存在栈里。因此,当程序执行完方法(method)时,它会知道怎么样返回并继续执行代码。
- 方法的所有参数将被复制到栈里,这是我们将要更加详细介绍的部分。
- 控制被传递到JIT编译过的方法里,同时线程开始执行代码。此时,我们将有另一个方法呈现在栈结构的“回调栈”里。
- public int AddFive(int pValue)
- {
- int result;
- result = pValue + 5;
- return result;
- }
栈像下图所示:
值类型传递
- class Class1
- {
- public void Go()
- {
- int x = 5;
- AddFive(x);
- Console.WriteLine(x.ToString());
- }
- public int AddFive(int pValue)
- {
- pValue += 5;
- return pValue;
- }
- }
当代码执行时,栈为x分配一块内存空间并存储值5
- public struct MyStruct
- {
- long a, b, c, d, e, f, g, h, i, j, k, l, m;
- }
让我们看看执行下面代码Go()方法时再到DoSomething()方法会发生的情况:
- public void Go()
- {
- MyStruct x = new MyStruct();
- DoSomething(x);
- }
- public void DoSomething(MyStruct pValue)
- {
- // 省略具体实现....
- }
{
MyStruct x = new MyStruct();
DoSomething(ref x);
}
public struct MyStruct
{
long a, b, c, d, e, f, g, h, i, j, k, l, m;
}
public void DoSomething(ref MyStruct pValue)
{
// 省略实现....
}
- public void Go()
- {
- MyStruct x = new MyStruct();
- x.a = 5;
- DoSomething(ref x);
- Console.WriteLine(x.a.ToString());
- }
- public void DoSomething(ref MyStruct pValue)
- {
- pValue.a = 12345;
- }
前言
简介
引用类型传递
- public class MyInt
- {
- public int MyValue;
- }
然后调用Go()方法,MyInt会被放到堆里因为它是一个引用类型。
- public void Go()
- {
- MyInt x = new MyInt();
- }
- public void Go()
- {
- MyInt x = new MyInt();
- x.MyValue = 2;
- DoSomething(x);
- Console.WriteLine(x.MyValue.ToString());
- }
- public void DoSomething(MyInt pValue)
- {
- pValue.MyValue = 12345;
- }
会发生这种情况:
- 开始调用Go(),栈分配一块内存空间给x。
- 执行行到DoSomething(),栈分配一块内在空间给pValue。
- x的值是堆中MyInt对应在栈里的内存地址,复制x给pValue。
用引用的方式传递引用类型
- public class Thing
- {
- }
- public class Animal:Thing
- {
- public int Weight;
- }
- public class Vegetable:Thing
- {
- public int Length;
- }
执行下面的Go()方法:
- public void Go()
- {
- Thing x = new Animal();
- Switcharoo(ref x);
- Console.WriteLine(
- "x is Animal : "
- + (x is Animal).ToString());
- Console.WriteLine(
- "x is Vegetable : "
- + (x is Vegetable).ToString());
- }
- public void Switcharoo(ref Thing pValue)
- {
- pValue = new Vegetable();
- }
x最终变成Vegetable。
- x is Animal : False
- x is Vegetable : True
让我们看看堆栈里到底发生了什么情况
- 调用Go()方法,栈分配一块内存空间给x。
- 堆分配一块内存空间给Animal。
- 开始执行Switcharoo()方法,栈分配一块内存空间给pValue并指向x。
- 栈分配一块内存空间给Vegetable。
- pValue改变了x的值使其指向Vegetable的内在地址。
总结
Even though with the .NET framework we don't have to actively worry about memory management and garbage collection (GC), we still have to keep memory management and GC in mind in order to optimize the performance of our applications. Also, having a basic understanding of how memory management works will help explain the behavior of the variables we work with in every program we write. In this article I'll cover some of the behaviors we need to be aware of when passing parameters to methods.
In Part I we covered the basics of the Heap and Stack functionality and where Variable Types and Reference Types are allocated as our program executes. We also covered the basic idea of what a Pointer is.
Parameters, the Big Picture.
Here's the detailed view of what happens as our code executes. We covered the basics of what happens when we make a method call in Part I. Let's get into more detail...
When we make a method call here's what happens:
- Space is allocated for information needed for the execution of our method on the stack (called a Stack Frame). This includes the calling address (a pointer) which is basically a GOTO instruction so when the thread finishes running our method it knows where to go back to in order to continue execution.
- Our method parameters are copied over. This is what we want to look at more closely.
- Control is passed to the JIT'ted method and the thread starts executing code. Hence, we have another method represented by a stack frame on the "call stack".
The code:
public int AddFive(int pValue)
{
int result;
result = pValue + 5;
return result;
}
Will make the stack look like this:
NOTE : the method does not live on the stack, and is illustrated here just for reference as the beginnnig of the stack frame.
As discussed in Part I, Parameter placement on the stack will be handled differently depending on whether it is a value type or a reference type. A value types is copied over and the reference of a reference type is copied over.ed over.
Passing Value Types.
Here's the catch with value types...
First, when we are passing a value types, space is allocated and the value in our type is copied to the new space on the stack. Look at the following method:
class Class1
{
public void Go()
{
int x = 5;
AddFive(x);
Console.WriteLine(x.ToString());
}
public int AddFive(int pValue)
{
pValue += 5;
return pValue;
}
}
As the method executes, space for "x" is placed on the stack with a value of 5.
Next, AddFive() is placed on the stack with space for it's parameters and the value is copied, bit by bit from x.
When AddFive() has finished execution, the thread is passed back to Go() and because AddFive() has completed, pValue is essentially "removed":
So it makes sense that the output from our code is "5", right? The point is that any value type parameters passed into a method are carbon copies and we count on the original variable's value to be preserved.
One thing to keep in mind is that if we have a very large value type (such as a big struct) and pass it to the stack, it can get very expensive in terms of space and processor cycles to copy it over each time. The stack does not have infinite space and just like filling a glass of water from the tap, it can overflow. A struct is a value type that can get pretty big and we have to be aware of how we are handling it.
Here's a pretty big struct:
public struct MyStruct
{
long a, b, c, d, e, f, g, h, i, j, k, l, m;
}
Take a look at what happens when we execute Go() and get to the DoSomething() method below:
public void Go()
{
MyStruct x = new MyStruct();
DoSomething(x);
}
public void DoSomething(MyStruct pValue)
{
// DO SOMETHING HERE....
}
This can be really inefficient. Imaging if we passed the MyStruct a couple thousand times and you can understand how it could really bog things down.
So how do we get around this problem? By passing a reference to the original value type as follows:
public void Go()
{
MyStruct x = new MyStruct();
DoSomething(ref x);
}
public struct MyStruct
{
long a, b, c, d, e, f, g, h, i, j, k, l, m;
}
public void DoSomething(ref MyStruct pValue)
{
// DO SOMETHING HERE....
}
This way we end up with more memory efficient allocation of our objects in memory.
The only thing we have to watch out for when passing our value type by reference is that we have access to the value type's value. Whatever is changed in pValue is changed in x. Using the code below, our results are going to be "12345" because the pValue.a actually is looking at the memory space where our original x variable was declared.
public void Go()
{
MyStruct x = new MyStruct();
x.a = 5;
DoSomething(ref x);
Console.WriteLine(x.a.ToString());
}
public void DoSomething(ref MyStruct pValue)
{
pValue.a = 12345;
}
Passing Reference Types.
Passing parameters that are reference types is similar to passing value types by reference as in the previous example.
If we are using the value type
public class MyInt
{
public int MyValue;
}
And call the Go() method, the MyInt ends up on the heap because it is a reference type:
public void Go()
{
MyInt x = new MyInt();
}
If we execute Go() as in the following code ...
public void Go()
{
MyInt x = new MyInt();
x.MyValue = 2;
DoSomething(x);
Console.WriteLine(x.MyValue.ToString());
}
public void DoSomething(MyInt pValue)
{
pValue.MyValue = 12345;
}
Here's what happens...
- Starting with the call to Go() the variable x goes on the stack.
- Starting with the call to DoSomething() the parameter pValue goes on the stack.
- The value of x (the address of MyInt on the stack) is copied to pValue
So it makes sense that when we change the MyValue property of the MyInt object in the heap using pValue and we later refer to the object on the heap using x, we get the value "12345".
So here's where it gets interesting. What happens when we pass a reference type by reference?
Check it out. If we have a Thing class and Animal and Vegetables are both things:
public class Thing
{
}
public class Animal:Thing
{
public int Weight;
}
public class Vegetable:Thing
{
public int Length;
}
And we execute the Go() method below:
public void Go()
{
Thing x = new Animal();
Switcharoo(ref x);
Console.WriteLine(
"x is Animal : "
+ (x is Animal).ToString());
Console.WriteLine(
"x is Vegetable : "
+ (x is Vegetable).ToString());
}
public void Switcharoo(ref Thing pValue)
{
pValue = new Vegetable();
}
Our variable x is turned into a Vegetable.
x is Animal : False
x is Vegetable : True
Let's take a look at what's happening:
- Starting with the Go() method call, the x pointer goes on the stack
- The Animal goes on the hea
- Starting with the call to Switcharoo() method, the pValue goes on the stack and points to x
- The Vegetable goes on the heapthe heap
- The value of x is changed through pValue to the address of the Vegetable
If we don't pass the Thing by ref, we'll keep the Animal and get the opposite results from our code.
If the above code doesn't make sense, check out my article on types of Reference variables to get a better understanding of how variables work with reference types.
In Conclusion.
We've looked at how parameter passing is handled in memory and now know what to look out for. In the next part of this series, we'll take a look at what happens to reference variables that live in the stack and how to overcome some of the issues we'll have when copying objects.
For now.
[No0000145]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈2/4的更多相关文章
- [No0000144]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈1/4
前言 虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...
- [No0000147]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈4/4
前言 虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...
- [No0000146]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈3/4
前言 虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...
- Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)
--reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...
- java - Stack栈和Heap堆的区别
首先分清楚Stack,Heap的中文翻译:Stack—栈,Heap—堆. 在中文里,Stack可以翻译为“堆栈”,所以我直接查找了计算机术语里面堆和栈开头的词语: 堆存储 ...
- 内存,堆,栈,heap,stack,data
1. 基本类型占一块内存. 引用类型占两块. 2. 类是静态概念. 函数中定义的基本类型变量和对象的引用类型变量都在函数的栈内存. 局部变量存在栈内存. new创建的对象和数组,存在堆内存. java ...
- iOS:堆(heap)和栈(stack)的理解
Objective-C的对象在内存中是以堆的方式分配空间的,并且堆内存是由你释放的,即release 栈由编译器管理自动释放的,在方法中(函数体)定义的变量通常是在栈内,因此如果你的变量要跨函数的话就 ...
- iOS中的堆(heap)和栈(stack)的理解
操作系统iOS 中应用程序使用的计算机内存不是统一分配空间,运行代码使用的空间在三个不同的内存区域,分成三个段:“text segment “,“stack segment ”,“heap segme ...
- stm32 堆和栈(stm32 Heap & Stack)【worldsing笔记】
关于堆和栈已经是程序员的一个月经话题,大部分有是基于os层来聊的. 那么,在赤裸裸的单片机下的堆和栈是什么样的分布呢?以下是网摘: 刚接手STM32时,你只编写一个 int main() ...
随机推荐
- s:iterator 标签使用错误记录
<s:iterator value="newMarriageMoveList" id='tpNewMarriage' status="number"> ...
- [转]设备唯一标识方法(Unique Identifier):如何在Windows系统上获取设备的唯一标识
原文地址:http://www.vonwei.com/post/UniqueDeviceIDforWindows.html 唯一的标识一个设备是一个基本功能,可以拥有很多应用场景,比如软件授权(如何保 ...
- 拯救安卓手机的数据(无法进入系统只能打开recovery)
这里不得不赞一个谷歌的开放,如果不是这样读取数据就很糟糕了,记得一千带着我的mac本子到苹果店,那个所谓的“天才”就说苹果的数据无法读取,我了个艹,为了避免丢失你必须得准备一个TM.好了废话不多说,进 ...
- [Big Data - Suro] Netflix开源数据流管理器Suro
Netflix近日开源了一个叫做Suro的工具,公司可以利用它来做数据源主机到目标主机的实时定向.它不只在Netflix的数据管道上扮演重要角色,大规模下的应用场景同样令人印象深刻. Netflix各 ...
- Android Launcher分析和修改11——自定义分页指示器(paged_view_indicator)
Android4.0的Launcher自带了一个简单的分页指示器,就是Hotseat上面那个线段,这个本质上是一个ImageView利用.9.png图片做,效果实在是不太美观,用测试人员的话,太丑了. ...
- 【iCore1S 双核心板_FPGA】例程十三:FSMC总线通信实验——复用地址模式
实验原理: STM32F103上自带FMC控制器,本实验将通过FMC总线的地址复用模式实现STM32与FPGA 之间通信,FPGA内部建立RAM块,FPGA桥接STM32和RAM块,本实验通过FSMC ...
- CEO退休
早上刚来公司就收到群发邮件,说CEO退休了,在公司服务了22年.以后还是会part time做vice chairman.其实在公司也没打过几次照面...就知道是个和善的老人,祝他退休生活幸福! 我的 ...
- Android Wifi 主动扫描 被动扫描
介绍主动扫描,被动扫描以及连接的wifi的扫描过程 参考文档 <802.11无线网络权威指南> <80_Y0513_1_QCA_WCN36X0_SOFTWARE_ARCHITECTU ...
- Spark学习笔记——读写HDFS
使用Spark读写HDFS中的parquet文件 文件夹中的parquet文件 build.sbt文件 name := "spark-hbase" version := " ...
- tensorflow随机梯度下降算法使用滑动平均模型
在采用随机梯度下降算法训练神经网络时,使用滑动平均模型可以提高最终模型在测试集数据上的表现.在Tensflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模 ...