51Nod-1436 方程的解数
版权属于以上链接
#include <iostream> #define mod(a, m) ((a) % (m) + (m)) % (m) using namespace std; typedef long long ll; const int MAGIC = ; ll n, k, l, m; struct matrix
{
ll c[][];
} a; ll f[]; void ans_cf(matrix a)
{
f[] = mod(a.c[][] + a.c[][], m);
f[] = mod(a.c[][] + a.c[][], m);
} matrix matrix_cf(matrix a, matrix b)
{
matrix ans;
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{
ans.c[i][j] = ;
for (int k = ; k < ; k++)
{
ans.c[i][j] += a.c[k][i] * b.c[j][k];
ans.c[i][j] = mod(ans.c[i][j], m);
}
}
} return ans;
} matrix matrix_pow(matrix a, ll n)
{
matrix ans;
ans.c[][] = ans.c[][] = ;
ans.c[][] = ans.c[][] = ;
while (n)
{
if (n & )
{
ans = matrix_cf(ans, a);
}
n = n >> ;
a = matrix_cf(a, a);
} return ans;
} ll qpow(ll a, ll b)
{
ll ans = ;
while (b)
{
if (b & )
{
ans = mod(ans * a, m);
}
b = b >> ;
a = mod(a * a, m);
} return ans;
} void init()
{
a.c[][] = a.c[][] = a.c[][] = ;
a.c[][] = ;
} int main(int argc, const char * argv[])
{
cin >> n >> k >> l >> m; unsigned long long t = 1ULL << l;
if (m == || (k >= t && l != MAGIC))
{
cout << << '\n';
return ;
} init();
a = matrix_pow(a, n);
ans_cf(a);
ll x = f[], y = mod(qpow(, n) - x, m); int cnt_0 = , cnt_1 = ;
while (k)
{
if (k % )
{
cnt_1++;
}
else
{
cnt_0++;
}
k >>= ;
}
cnt_0 += l - cnt_0 - cnt_1; ll ans = mod(mod(qpow(x, cnt_0), m) * mod(qpow(y, cnt_1), m), m);
cout << ans << '\n'; return ;
}
51Nod-1436 方程的解数的更多相关文章
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- [Swust OJ 166]--方程的解数(hash法)
题目链接:http://acm.swust.edu.cn/problem/0166/ Time limit(ms): 5000 Memory limit(kb): 65535 有如下方程组: A1 ...
- 【poj1186】 方程的解数
http://poj.org/problem?id=1186 (题目链接) 题意 已知一个n元高次方程: 其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数 ...
- NOI2001 方程的解数(双向搜索)
solution 一道非常经典的双向搜索题目,先将前3个未知数枚举一遍得到方程的前半部分所有可能的值,取负存入第一个队列中再将后3个未知数枚举一遍,存入第二个队列中.这样我们只要匹配两个队列中相同的元 ...
- 计蒜客 方程的解数(DFS)
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...
随机推荐
- 开源的CAS实现SSO
https://www.ibm.com/developerworks/cn/opensource/os-cn-cas/index.html ISC是基于CAS定制的,使用的高级的代理模式. https ...
- [cnbeta]华为值多少钱,全世界非上市公司中估值最高的巨头
华为值多少钱,全世界非上市公司中估值最高的巨头 https://www.cnbeta.com/articles/tech/808203.htm 小米.美团都曾表达过不想.不急于上市,但没人信,所以 ...
- 软件工程_1st weeks
本周为软件工程课的第一周,本周主要完成了三个工作:了解了github并使用.拜读了<构建之法>并开通了博客以及完成了四则运算的代码实现. 对于第一项工作github的安装和使用,花费了5个 ...
- delphi的一个公用函数库
delphi的一个公用函数库 {********************************************** *** Name: PublicFunc; *** Author: l ...
- mysql5.7 rpm安装教程
注意版本和此次更新时间 2017-12-03 版本:mysql-5.7.20-1.el6.x86_64 环境:linux6.x 官方下载地址: wget https://dev.mysql.co ...
- 设计模式【PHP案例】
内容来源: 波客 菜鸟教程 策略模式 在策略模式(Strategy Pattern)中,一个类的行为或其算法可以在运行时更改.这种类型的设计模式属于行为型模式. 在策略模式中,我们创建表示各种策略的对 ...
- A Plug for UNIX POJ - 1087(模板题 没啥好说的。。就用了一个map)
题意: 几种插头,每一种都只有一个,但有无限个插头转换器,转换器(a,b) 意味着 可以把b转换为a,有几个设备,每个设备对应一种插头,求所不能匹配插头的设备数量 这个题可以用二分图做 , 我用的是最 ...
- Codeforces Round #411 div 2 D. Minimum number of steps
D. Minimum number of steps time limit per test 1 second memory limit per test 256 megabytes input st ...
- Git分支合并
大致描述一下 上次为了解决bug新建了一个bugfix分支,并提交了c5(这个1,2,3,4,5具体的可能和图片对应不太一样,但是结构一样),下面就该把bugfix与master进行整合,整合之后就可 ...
- 【 Gym - 101138F 】GukiZ Height (数学)
BUPT2017 wintertraining(15) #4 C Gym - 101138F 题意 初始高度0,目标值h,第i天目标值会下降i,当前高度会改变a[i%n],求高度不小于目标值的最早的时 ...