51Nod-1436 方程的解数
版权属于以上链接
#include <iostream> #define mod(a, m) ((a) % (m) + (m)) % (m) using namespace std; typedef long long ll; const int MAGIC = ; ll n, k, l, m; struct matrix
{
ll c[][];
} a; ll f[]; void ans_cf(matrix a)
{
f[] = mod(a.c[][] + a.c[][], m);
f[] = mod(a.c[][] + a.c[][], m);
} matrix matrix_cf(matrix a, matrix b)
{
matrix ans;
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{
ans.c[i][j] = ;
for (int k = ; k < ; k++)
{
ans.c[i][j] += a.c[k][i] * b.c[j][k];
ans.c[i][j] = mod(ans.c[i][j], m);
}
}
} return ans;
} matrix matrix_pow(matrix a, ll n)
{
matrix ans;
ans.c[][] = ans.c[][] = ;
ans.c[][] = ans.c[][] = ;
while (n)
{
if (n & )
{
ans = matrix_cf(ans, a);
}
n = n >> ;
a = matrix_cf(a, a);
} return ans;
} ll qpow(ll a, ll b)
{
ll ans = ;
while (b)
{
if (b & )
{
ans = mod(ans * a, m);
}
b = b >> ;
a = mod(a * a, m);
} return ans;
} void init()
{
a.c[][] = a.c[][] = a.c[][] = ;
a.c[][] = ;
} int main(int argc, const char * argv[])
{
cin >> n >> k >> l >> m; unsigned long long t = 1ULL << l;
if (m == || (k >= t && l != MAGIC))
{
cout << << '\n';
return ;
} init();
a = matrix_pow(a, n);
ans_cf(a);
ll x = f[], y = mod(qpow(, n) - x, m); int cnt_0 = , cnt_1 = ;
while (k)
{
if (k % )
{
cnt_1++;
}
else
{
cnt_0++;
}
k >>= ;
}
cnt_0 += l - cnt_0 - cnt_1; ll ans = mod(mod(qpow(x, cnt_0), m) * mod(qpow(y, cnt_1), m), m);
cout << ans << '\n'; return ;
}
51Nod-1436 方程的解数的更多相关文章
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- [Swust OJ 166]--方程的解数(hash法)
题目链接:http://acm.swust.edu.cn/problem/0166/ Time limit(ms): 5000 Memory limit(kb): 65535 有如下方程组: A1 ...
- 【poj1186】 方程的解数
http://poj.org/problem?id=1186 (题目链接) 题意 已知一个n元高次方程: 其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数 ...
- NOI2001 方程的解数(双向搜索)
solution 一道非常经典的双向搜索题目,先将前3个未知数枚举一遍得到方程的前半部分所有可能的值,取负存入第一个队列中再将后3个未知数枚举一遍,存入第二个队列中.这样我们只要匹配两个队列中相同的元 ...
- 计蒜客 方程的解数(DFS)
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...
随机推荐
- Linux下安装oracle的过程
1. Linux 安装 主要不要将home分区设置的特别大 2. 安装必须的一些包. yum install -y \ binutils.x86_64 \ elfutils-libelf-devel. ...
- centos7 搭建svn服务器
1.安装svn服务器: yum install subversion 2.配置svn服务器: 建立svn版本库根目录及相关目录即svndata及密码权限命令svnpasswd: mkdir -p /a ...
- angular2+中数据变更子组件页面未更新
引入监测 import {ChangeDetectorRef} from '@angular/core'; constructor( private changeDetectorRef:ChangeD ...
- python格式化字符串Type Error: Format Requires Mapping 的问题
最近几天 频繁看到有这种写法 BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s" 第一次看到的pythoner看到可能会有点懵逼 ...
- 线性代数的本质与几何意义 03. 矩阵与线性变换 (3blue1brown 咪博士 图文注解版)
首先,恭喜你读到了咪博士的这篇文章.本文可以说是该系列最重要.最核心的文章.你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么.读完咪博士的这篇文章,你一定会有一种醍醐灌顶.豁然开朗的感觉! ...
- python 字符串内置方法实例
一.字符串方法总结: 1.查找: find(rfind).index(rindex).count 2.变换: capitalize.expandtabs.swapcase.title.lower.up ...
- if --else的注意点
- SOC四大弱点分析
导读 今年的年度安全运营中心(SOC)调查中,SANS研究所指出了4个最为常见的SOC弱点.这些弱点的根源可被追溯到我们非常熟悉的人.过程.适度规划和技术实现上.下面我们就来看看SOC的四大弱点究竟是 ...
- python列表和元组操作
列表 列表(list)是python以及其他语言中最常用到的数据结构之一.Python使用中括号[ ]来解析列表.列表是可变的(mutable)—可以改变列表的内容. 定义列表 names = ['m ...
- BZOJ5372 PKUSC2018神仙的游戏(NTT)
首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...